Mean curvature flow of entire graphs evolving away from the heat flow

Xuan Hien Nguyen (joint work with Gregory Drugan)
August 19, 2016

Iowa State University
Introduction
We consider an initial graph $u_0 : \mathbb{R}^n \to \mathbb{R}$ with $\|u_0\|_{C^{2,\alpha}} \leq C$.

Heat Flow

\[
\frac{\partial v}{\partial t} = \Delta v
\]

$v(x, 0) = u_0(x)$

Mean Curvature Flow

\[
\frac{\partial u}{\partial t} = \sqrt{1 + |Du|^2} \, \text{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right)
\]

$u(x, 0) = u_0(x)$
We consider an initial graph \(u_0 : \mathbb{R}^n \to \mathbb{R} \) with \(\| u_0 \|_{C^{2,\alpha}} \leq C \).

Heat Flow

\[
\frac{\partial v}{\partial t} = \Delta v
\]

\(v(x, 0) = u_0(x) \)

Long-time existence

Mean Curvature Flow

\[
\frac{\partial u}{\partial t} = \sqrt{1 + |Du|^2} \text{ div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right)
\]

\(u(x, 0) = u_0(x) \)

Long-time existence [Ecker-Huisken '84]
We consider an initial graph $u_0 : \mathbb{R}^n \to \mathbb{R}$ with $\|u_0\|_{C^{2,\alpha}} \leq C$.

Heat Flow
\[\frac{\partial v}{\partial t} = \Delta v \]
\[v(x, 0) = u_0(x) \]

Long-time existence

Maximum principle

Mean Curvature Flow
\[\frac{\partial u}{\partial t} = \sqrt{1 + |Du|^2} \text{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) \]
\[u(x, 0) = u_0(x) \]

Long-time existence [Ecker-Huisken ’84]

Disjoint surfaces stay disjoint
Dimension \(n = 1 \)

Heat flow

\[
\frac{\partial v}{\partial t} = \Delta v
\]

Mean curvature flow

\[
\frac{\partial u}{\partial t} = \sqrt{1 + |Du|^2} \text{ div} \left(\frac{Du}{\sqrt{1+|Du|^2}} \right)
\]

Nara-Taniguchi [’07] proved that the solution to the MCF tends to the solution to the heat flow (\(n = 1 \)):

\[
\sup_{x \in \mathbb{R}} |u(x, t) - v(x, t)| \leq C t^{-1/2}, \quad t > 0
\]
Dimension $n = 1$

<table>
<thead>
<tr>
<th>Heat flow</th>
<th>Mean curvature flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\partial v}{\partial t} = \Delta v$</td>
<td>$\frac{\partial u}{\partial t} = \sqrt{1 +</td>
</tr>
<tr>
<td>$\frac{\partial v}{\partial t} = v_{xx}$</td>
<td>$\frac{\partial u}{\partial t} = u_{xx} - \frac{u_x u_x u_{xx}}{1 + u_x^2}$</td>
</tr>
</tbody>
</table>

Nara-Taniguchi ['07] proved that the solution to the MCF tends to the solution to the heat flow ($n = 1$):

$$\sup_{x \in \mathbb{R}} |u(x, t) - v(x, t)| \leq Ct^{-1/2}, \quad t > 0$$
Dimension $n = 1$

<table>
<thead>
<tr>
<th>Heat flow</th>
<th>Mean curvature flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\partial v}{\partial t} = \Delta v$</td>
<td>$\frac{\partial u}{\partial t} = \sqrt{1 +</td>
</tr>
<tr>
<td>$\frac{\partial v}{\partial t} = v_{xx}$</td>
<td>$\frac{\partial u}{\partial t} = u_{xx} - \frac{u_x u_x u_{xx}}{1+u_x^2}$</td>
</tr>
<tr>
<td></td>
<td>$\frac{\partial u}{\partial t} = u_{xx} - (u_x - \arctan u_x)_x$</td>
</tr>
</tbody>
</table>
Dimension \(n = 1 \)

<table>
<thead>
<tr>
<th>Heat flow</th>
<th>Mean curvature flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial v}{\partial t} = \Delta v)</td>
<td>(\frac{\partial u}{\partial t} = \sqrt{1 +</td>
</tr>
<tr>
<td>(\frac{\partial v}{\partial t} = v_{xx})</td>
<td>(\frac{\partial u}{\partial t} = u_{xx} - \frac{u_x u_x u_{xx}}{1 + u_x^2})</td>
</tr>
</tbody>
</table>

\[\frac{\partial u}{\partial t} = u_{xx} - (u_x - \arctan u_x)_x \]

\[\frac{\partial u}{\partial t} = u_{xx} + F_x \]
Dimension $n = 1$

Heat flow

\[
\frac{\partial v}{\partial t} = \Delta v \\
\frac{\partial v}{\partial t} = v_{xx}
\]

Mean curvature flow

\[
\frac{\partial u}{\partial t} = \sqrt{1 + |Du|^2} \text{ div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) \\
\frac{\partial u}{\partial t} = u_{xx} - \frac{u_x u_x u_{xx}}{1 + u_x^2} \\
\frac{\partial u}{\partial t} = u_{xx} - (u_x - \text{arctan} u_x)_x \\
\frac{\partial u}{\partial t} = u_{xx} + F_x
\]

Nara-Taniguchi [’07] proved that the solution to the MCF tends to the solution to the heat flow ($n = 1$):

\[
\sup_{x \in \mathbb{R}} |u(x, t) - v(x, t)| \leq C t^{-1/2}, \quad t > 0
\]
Proposition (Repnikov-Eidelman ’67)

Let \(v(x, t) \) be a solution to the heat flow. The limit

\[
\lim_{t \to \infty} v(x, t) = A(x)
\]

exists uniformly in \(x \in \mathbb{R}^n \) if and only if

\[
\lim_{\rho \to \infty} \frac{1}{|B_{x, \rho}|} \int_{B_{x, \rho}} u_0(y) \, dy = A(x)
\]

exists uniformly in \(x \in \mathbb{R}^n \); Moreover \(A(x) \equiv C \).
Proposition (Repnikov-Eidelman ’67)

Let $v(x, t)$ be a solution to the heat flow. The limit

$$\lim_{t \to \infty} v(x, t) = A(x)$$

exists uniformly in $x \in \mathbb{R}^n$ if and only if

$$\lim_{\rho \to \infty} \frac{1}{|B_{x, \rho}|} \int_{B_{x, \rho}} u_0(y)dy = A(x)$$

exists uniformly in $x \in \mathbb{R}^n$; Moreover $A(x) \equiv C$.

Question: Is the Nara-Taniguchi result true for $n \geq 2$?
Stabilization of the heat flow

Proposition (Repnikov-Eidelman ’67)

Let $v(x, t)$ be a solution to the heat flow. The limit

$$\lim_{t \to \infty} v(x, t) = A(x)$$

exists uniformly in $x \in \mathbb{R}^n$ if and only if

$$\lim_{\rho \to \infty} \frac{1}{|B_{x, \rho}|} \int_{B_{x, \rho}} u_0(y) dy = A(x)$$

exists uniformly in $x \in \mathbb{R}^n$; Moreover $A(x) \equiv C$.

Question: Is the Nara-Taniguchi result true for $n \geq 2$?

- Yes for u_0 rotationally symmetric [Nara ’08].
Proposition (Repnikov-Eidelman ’67)

Let \(v(x, t) \) be a solution to the heat flow. The limit

\[
\lim_{t \to \infty} v(x, t) = A(x)
\]

exists \textit{uniformly in} \(x \in \mathbb{R}^n \) \textit{if and only if}

\[
\lim_{\rho \to \infty} \frac{1}{|B_{x, \rho}|} \int_{B_{x, \rho}} u_0(y) dy = A(x)
\]

exists \textit{uniformly in} \(x \in \mathbb{R}^n \); Moreover \(A(x) \equiv C \).

Question: Is the Nara-Taniguchi result true for \(n \geq 2 \)?

- Yes for \(u_0 \) rotationally symmetric [Nara ’08].
- No in general [Drugan - N. ’16]
Heat flow stabilizes; MCF stabilizes
Initial graph U_0

Place tall spikes of volume 1 on \mathbb{Z}^n
Place tall spikes of volume 1 on \mathbb{Z}^n

Heat flow

Because the average over larger balls tends to 1,

$$\lim_{t \to \infty} v(\cdot, t) \to 1.$$
A useful fact

There are self-shrinking doughnuts. Choose a scaled version \mathbb{T}_0 so that

$$r_0 < \frac{1}{2}$$

We denote its extinction time t_*.

Figure 1: A cross section of \mathbb{T}_0.

Initial graph \mathcal{U}_0

Place tall spikes of volume 1 on \mathbb{Z}^n
Place tall spikes of volume 1 on \mathbb{Z}^n

Mean curvature flow

$$u(\cdot, t) \leq \delta_0, \quad t \geq t^*. $$
Mean curvature flow

\[u(\cdot, t) \leq \delta_0, \quad t \geq t_*. \]
Mean curvature flow

\[u(\cdot, t) \leq \delta_0, \quad t \geq t^*. \]

Because of interior bounds by Ecker-Huisken ['91],

\[\lim_{t \to \infty} u(\cdot, t) = C \leq \delta_0 \]
MCF oscillates; Heat flow stabilizes
A solution that oscillates indefinitely

Let $I_n = (n! + 1, n! - 1)$, and

\[u_0 = \begin{cases}
1, & |x| \in I_{2k+1} \\
0, & |x| \in I_{2k} \end{cases} \]

We have

\[\liminf_{t \to \infty} \nu(0, t) = 0, \quad \limsup_{t \to \infty} \nu(0, t) = 1 \]
A solution that oscillates indefinitely

Let \(I_n = (n! + 1, n! - 1) \), and

\[
 u_0 = \begin{cases}
 1, & |x| \in I_{2k+1} \\
 0, & |x| \in I_{2k}
 \end{cases}
\]

We have

\[
\liminf_{t \to \infty} v(0, t) = 0, \quad \limsup_{t \to \infty} v(0, t) = 1
\]
A solution that oscillates indefinitely

Let $I_n = (n! + 1, n! - 1)$, and

$$u_0 = \begin{cases}
1, & |x| \in l_{2k+1} \\
0, & |x| \in l_{2k}
\end{cases}$$

We have

$$\lim_{t \to \infty} \inf v(0, t) = 0, \quad \lim_{t \to \infty} \sup v(0, t) = 1$$
An initial graph \mathcal{W}_0

Heat flow: uniform convergence to $\lim_{t \to \infty} v(\cdot, t) = 1$.

9
An initial graph \mathcal{W}_0

Heat flow: uniform convergence to 1

$$\lim_{t \to \infty} v(\cdot, t) = 1.$$
An initial graph w_0

w_0

Mean curvature flow: barriers

- $u(\cdot, t^*) \leq r_0$ on the odd slabs.
- $u(\cdot, t^*) \leq 1 + r_0$ on the even slabs.
An initial graph \mathcal{W}_0

Mean curvature flow: barriers

- $u(\cdot, t_*) \leq r_0$ on the odd slabs.
- $u(\cdot, t_*) \leq 1 + r_0$ on the even slabs.
An initial graph ψ_0

Spikes here.

- ψ_0 is a lower barrier.
- $\psi_0 + r_0$ is an upper barrier after time t^\ast.

S_{2k}, S_{2k+1}, S_{2k+2}

$(2k)!$, $(2k + 1)!$, $(2k + 2)!$
An initial graph ψ_0

Mean curvature flow: the solution oscillates

- ψ_0 is a lower barrier.

$$\limsup_{t \to \infty} u(0, t) \geq 1$$
Mean curvature flow: the solution oscillates

- ψ_0 is a lower barrier.
- “$\psi_0 + r_0$” is an upper barrier after time t_*.

$$\limsup_{t \to \infty} u(0, t) \geq 1$$
Mean curvature flow: the solution oscillates

- ψ_0 is a lower barrier.
- "$\psi_0 + r_0$" is an upper barrier after time t_*.

$$\limsup_{t \to \infty} u(0, t) \geq 1$$

$$\liminf_{t \to \infty} u(0, t) \leq r_0 \leq \varepsilon$$
Thank you for your attention!