Iterated Routh’s triangles

Emily Carroll, Arka P. Ghosh, Xuan Hien Nguyen,
and Alexander Roitershtein

March 11, 2017

Abstract

We consider a series of iterated Routh’s triangles. In a general deterministic case we find the limit point of the sequence. We discuss a representation of the limit as a fixed point of a 3-dimensional affine transformation and a curious interpretation of the iterative process as a 3-person job allocation procedure. For a random sequence of iterations, we show that the expected value of the limiting point is the centroid of the original triangle.

1 Introduction

It is well known that the medians of a triangle are concurrent. In general, three interior lines out of the vertices of a triangle form a smaller triangle in its interior, called a Routh’s triangle. Only under special circumstances do these interior lines intersect at one point, and Ceva’s theorem (see Theorem 1 below) provides a necessary and sufficient condition for the concurrence. The aim of this paper is to study the convergence of a general sequence of nested Routh’s triangles. Although a part of our results remains valid when some of the lines are exterior, for simplicity we focus on interior lines.

Here and henceforth, a triangle is a closed convex polygon with three distinct vertices in \mathbb{R}^2 and \mathbb{Z}_+ stands for the set of non-negative integers. Let $\triangle A_0B_0C_0$ be a triangle and $(x_n, y_n, z_n) \in (0, \infty)^3$, $n \in \mathbb{Z}_+$, a given sequence of triplets of positive numbers. To comply with the limitation imposed by Ceva’s theorem (see Theorem 1 below) we assume throughout this paper:

$$x_n y_n z_n \neq 1, \quad \forall n \in \mathbb{Z}_+. \tag{1}$$

A Routh’s triangle $\triangle A_{n+1}B_{n+1}C_{n+1}$ is constructed within the interior of $\triangle A_nB_nC_n$ as shown in Figure 1 below using the following scheme:

$$\frac{|B_nA_n'|}{|C_nA_n'|} = x_n, \quad \frac{|C_nB_n'|}{|A_nB_n'|} = y_n, \quad \frac{|A_nC_n'|}{|B_nC_n'|} = z_n \tag{2}$$

We denote the triangle $\triangle A_nB_nC_n$ by T_n and its area by Δ_n. We refer to the line segments A_nA_n', B_nB_n' and C_nC_n' as cevians and to the triple (x_n, y_n, z_n) as cevian ratios. Condition (1) ensures that the triangles T_n are non-degenerate.
Figure 1: The n-th iteration step in the nested Routh’s triangles process. The points A'_n on the triangle side B_nC_n, B'_n on C_nA_n, and C'_n on A_nB_n are chosen according to the rule specified in [2]. A_{n+1} is the intersection point of the straight segments $B_nB'_n$ and $C_nC'_n$, B_{n+1} the intersection of $C_nC'_n$ and $A_nA'_n$, and C_{n+1} the intersection of $A_nA'_n$ and $B_nB'_n$.

Theorem 1 (Ceva’s theorem). Assume that T_n is a non-degenerate triangle. Then the cevians $A_nA'_n$, $B_nB'_n$ and $C_nC'_n$ are concurrent if and only if $x_ny_nz_n = 1$.

Theorem 2 (Routh’s theorem). $\Delta_{n+1} = \Delta_n \cdot R(x_n, y_n, z_n)$, where

$$R(x, y, z) := \frac{(xyz - 1)^2}{(1 + x + xy)(1 + y + yz)(1 + z + xz)}.$$

Ceva’s theorem is named after the Italian mathematician Giovanni Ceva, who published this result in 1678. The theorem is closely related to the Menelaus theorem, and was known at least as early as in the eleventh century by Al-Mutaman ibn Hūd, a ruling King of Zaragoza [23]. For discussions on and generalizations of Ceva’s theorem see, for instance, [3, 19, 27, 28, 32, 37, 41]. Notably, in [22] Ceva’s theorem is applied to analyze a connection between two psychometric models, the Bradley-Terry-Luce model of a pairwise data comparison and the Rasch measurement model. Ceva’s concurrence condition is implied by Routh’s theorem. For various proofs and extensions of Routh’s area formula, we refer the reader to [5, 11, 25, 26, 31, 35], see also references therein. In particular, [31] includes a comprehensive list of references on the topic. We remark that Routh’s theorem is implicit in formula (8) below, as outlined in Remark [7] following the display.

Various iterations of triangles are studied in many intriguing articles, in which the transformation from a triangle in generation n to the “daughter triangle” in generation $n + 1$ is seen as either a Möbius transformation or an affine mapping in a suitable “representation space”. See, for instance, [2, 9, 12, 13, 17, 21, 24, 30, 34, 40] and references therein. The most relevant to our setting are articles [10, 20, 33], where the sequence of nested Routh’s triangles T_n is considered in the case $x_n = y_n = z_n = x$ for some $x \neq 1$ and all $n \in \mathbb{Z}_+$. In that case T_n converges to the centroid of T_0. The main focus in the latter three articles is in the study of the dynamics of shapes of the triangles. In particular, in [20] necessary and sufficient conditions on x are given for the sequence T_n to be either everywhere dense or periodic in the space of shapes. Here we identify the shape of a triangle $\triangle ABC$ with a unique $\sigma \in \mathbb{C}$ such that the triangle in the complex half-plane $\text{Im}(z) \geq 0$ with vertices at 0, 1, and σ is similar to $\triangle ABC$. Thus two triangles are shape-equivalent if they are similar.

In this paper, we are mainly concerned with $T_\infty = \lim_{n \to \infty} T_n$ as defined in [1] below. In barycentric coordinates the transformation $T_n \to T_{n+1}$ is represented by a linear mapping $\mathbb{R}^3 \to \mathbb{R}^3$ associated with certain stochastic 3×3 matrix P, which is introduced in [9]
below. The main technical difference between the general case and the situation when \(x_n = y_n = z_n = x \) for all \(n \in \mathbb{Z}_+ \) is that in the latter case \(P \) is circulant and double-stochastic. The geometry of the affine map \(P : \mathbb{R}^3 \to \mathbb{R}^3 \) is considerably more complex, thus harder to study in the general case. However, some insight into asymptotic properties of the sequence \((T_n)_{n \in \mathbb{Z}_+}\) still can be obtained using a general theory of stochastic matrices and associated Markov chains. The present paper appears to be a first attempt in the literature to explore in this direction.

The rest of the paper is structured as follows. In Section 2 we prove basic convergence results for the triangle iterative process. In particular, we show that when \(x_n = y_n = z_n \) for all \(n \in \mathbb{Z}_+ \), the limit \(T_\infty \) is a non-degenerate triangle if and only if \(\sum_{n=0}^{\infty} \bar{x}_n < \infty \), where \(\bar{x}_n := \min\{x_n, x_n^{-1}\} \). We also give an explicit example of nested Routh’s triangles converging to a flat (collinear) triangle. In Section 3 we identify the limiting point \(T_\infty \) when \(x_n = x \), \(y_n = y \), and \(z_n = z \) for all \(n \in \mathbb{Z}_+ \) and some \((x, y, z) \in (0, \infty)^3\). In Section 4 we study a sequence of nested Routh’s triangles associated with a random sequence \((x_n, y_n, z_n)\). It turns out that for any “regular” random sequence \((T_n)_{n \in \mathbb{Z}_+}\), the expected value of the random limit \(T_\infty \) coincides with the centroid of the initial triangle \(\triangle A_0B_0C_0 \). Finally, in Section 5 we discuss certain game-theoretic and Markov chain interpretations of a general iterative Routh’s triangle sequence \((T_n)_{n \in \mathbb{Z}_+}\) and its limit point \(T_\infty \). In the process we describe a simple 3-person strategic game with the set of deterministic Nash equilibria represented by the triples \((x, y, z) \in (0, \infty)^3\) satisfying Ceva’s condition \(xyz = 1 \).

2 Basic convergence results

We are interested in the following set:

\[
T_\infty := \bigcap_{n=0}^{\infty} T_n = \lim_{m \to \infty} \bigcap_{n=0}^{m} T_n
\]

The first identity is a formal definition of \(T_\infty \), the second one is often used to introduce the limit of a sequence of nested sets [15]. By Cantor’s intersection theorem, \(T_\infty \) is a closed non-empty set.

First, we formally verify the following intuitive result:

Lemma 3. \(T_\infty \) is either a triangle or a straight segment or a single point.

Proof. By the Bolzano-Weierstrass theorem, the sequence \((A_n)_{n \in \mathbb{Z}_+}\) has a converging subsequence, say \((A_{n_k})_{k \in \mathbb{Z}_+}\). The sequence \((B_{n_k})_{k \in \mathbb{Z}_+}\) has a converging subsequence, say \((B_{m_k})_{k \in \mathbb{Z}_+}\). Finally, the sequence also \((C_{m_k})_{k \in \mathbb{Z}_+}\) has a converging subsequence, say \((C_{j_k})_{k \in \mathbb{Z}_+}\). Let \(A := \lim_{k \to \infty} A_{j_k}, B := \lim_{k \to \infty} B_{j_k}, \) and \(C := \lim_{k \to \infty} C_{j_k} \). Then \(\triangle ABC = \lim_{k \to \infty} T_{j_k} \), and hence, since the limit along a subsequence coincides with the limit of the sequence if the latter exists, \(\triangle ABC = T_\infty \). Thus the limit \(T_\infty \) is a triangle, a straight segment, or a single point according to the maximal number of linearly independent points (vectors) in the set \(\{A, B, C\} \).

If the sequences \(x_n, y_n \), and \(z_n \) are uniformly bounded away from zero and infinity, then the diameter of \(T_n \) decreases exponentially fast to zero, and therefore \(T_\infty \) is a single point.
To derive this result one can use, for instance, equation (13) below. A more general sufficient condition for an inhomogeneous sequence of cevian ratios \((x_n, y_n, z_n)_{n \in \mathbb{Z}_+}\) to define nested Routh’s triangles converging to a single point \(T_\infty\), together with a rate of convergence, is given in Theorem 9 below.

There are several interesting examples in the literature when an iterative sequence of triangles converges to a straight segment (flat triangle), see for instance [2, 17, 30]. An explicit class of iterative Routh’s triangle sequences which converge to a straight segment is constructed in the following example.

Example 4. Because of the rotation incurred at every iteration step (see Figure 1), we use here an alternate labeling of the vertices to better keep track of the limiting points. Namely, we set:

\[
\begin{align*}
E_n &= A_n, \quad F_n = B_n, \quad G_n = C_n \quad \text{if } n \equiv 0 \pmod{3}, \\
E_n &= C_n, \quad F_n = A_n, \quad G_n = B_n \quad \text{if } n \equiv 1 \pmod{3}, \\
E_n &= B_n, \quad F_n = C_n, \quad G_n = A_n \quad \text{if } n \equiv 2 \pmod{3}
\end{align*}
\]

Heuristically, if the initial triangle \(\triangle A_0B_0C_0\) is configured as in Figure 1, the \(E_n\)’s are the top vertices, the \(F_n\)’s the bottom right, and the \(G_n\)’s the bottom left vertices.

Consider the triangle \(T_0\) with vertices \(E_0 = (0, 1), \; F_0 = (1, 0), \; G_0 = (0, 0)\), and two sequences of positive numbers \((t_n)_{n \in \mathbb{Z}_+}\) and \((s_n)_{n \in \mathbb{Z}_+}\) such that

\[
\begin{align*}
0 < t_1, \quad (t_n)_{n \in \mathbb{Z}_+} & \text{ is strictly increasing, } \quad t_n \to 1/3 \text{ as } n \to \infty \\
1 > s_1, \quad (s_n)_{n \in \mathbb{Z}_+} & \text{ is strictly decreasing, } \quad s_n \to 2/3 \text{ as } n \to \infty
\end{align*}
\]

Given \(T_n = \triangle E_nF_nG_n\), we define \(E_{n+1}, F_{n+1}\) and \(G_{n+1}\) as follows:

- Take \(F’\) to be the midpoint of \(G_n E_n\) and draw the cevian \(F_nF’\),
- The cevian out of \(G_n\) is the segment that intersects \(F_nF’\) at a point with abscissa \(s_n\). This intersection point is labeled \(F_{n+1}\),
- The cevian out of \(E_n\) is the segment that intersects \(F_nG_{n+1}\) at a point with abscissa \(t_n\). This intersection point is labeled \(G_{n+1}\).
- The intersection of \(F_nF’\) and \(E_nG_{n+1}\) is denoted by \(E_{n+1}\).

Repeat the above procedure indefinitely to obtain \(T_n = \triangle E_nF_nG_n\) for all \(n \in \mathbb{N}\). By construction, the area of \(T_{n+1}\) is no more that half of the area of \(T_n\). Thus \(T_\infty\) has area zero and is not a triangle. It cannot be a point because the abscissas of the \(G_n\)’s are less than \(1/3\) while the ones for the \(F_n\)’s are greater than \(2/3\).

In the case \(x_n = y_n = z_n\), the next theorem gives a necessary and sufficient condition for \((T_n)_{n \in \mathbb{Z}_+}\) to converge to a non-degenerate triangle. The definition of \(\tilde{x}_n\) in the statement of the theorem is in alignment with the fact that the shape of \(T_{n+1}\) is invariant under the “mirror” transformation of cevians \((x_n, y_n, z_n) \to (x_n^{-1}, y_n^{-1}, z_n^{-1})\), which maps vertices of \(T_{n+1}\) into their respective isogonal conjugates in \(T_n\).
Theorem 5. Suppose that \(z_n = y_n = x_n \) with \(x_n > 0, x_n \neq 1 \) for all \(n \geq 0 \). Let

\[
\tilde{x}_n = \begin{cases}
 x_n & \text{if } x_n < 1, \\
 x_n^{-1} & \text{if } x_n > 1.
\end{cases}
\]

If the series \(\sum_{n=0}^{\infty} \tilde{x}_n \) converges, then \(T_\infty \) is a non-degenerate triangle. If the series diverges, \(T_\infty \) is the centroid of \(T_0 \).

Proof. We note that we can take the original triangle to be an equilateral triangle without loss of generality. Indeed, if the starting triangle is scalene, we can find an invertible affine mapping \(K : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) of the Euclidean plane such that \(K \) transforms \(T_0 \) into an equilateral triangle. Notice that because of the linearity of \(K \), the centroid \(G \) of \(T_0 \) is mapped into the centroid of the equilateral triangle \(KT_0 \). It is not hard to check that affine transformations preserve cevian ratios, and hence leave the convergence mode (according to the classification given in Lemma 3) unaffected. More specifically, the above defined map \(K \) commutes with any transformation \(H_n : T_0 \rightarrow T_n, n \in \mathbb{Z}_+ \cup \{ \infty \} \), and in particular, \(K^{-1}H_\infty KT_0 = H_\infty KT_0 = T_\infty \). This implies that the claim of the theorem is \(K \)-invariant, and we can consider \(KT_0 \) as the initial triangle.

When \(x_n = y_n = z_n \) and the initial triangle \(T_0 \) is equilateral, each iterated Routh’s triangle \(T_n, n \in \mathbb{N} \), is also equilateral because it is symmetric with respect to rotations of 120 degrees about the centroid \(G \) of \(T_0 \). Therefore \(T_\infty \) is either a point or a triangle. To identify the limit, we look at its area \(\Delta_\infty \). By virtue of (3) and because \(R(x_n, x_n, x_n) = R(\tilde{x}_n, \tilde{x}_n, \tilde{x}_n), \) we have

\[
\frac{\Delta_\infty}{\Delta_0} = \prod_{n=0}^{\infty} \frac{(\tilde{x}_n^3 - 1)^2}{(\tilde{x}_n^2 + \tilde{x}_n + 1)^3} = \prod_{n=0}^{\infty} \left(\frac{\tilde{x}_n - 1}{\tilde{x}_n^2 + \tilde{x}_n + 1} \right) = \prod_{n=0}^{\infty} \left(1 - \frac{3\tilde{x}_n}{\tilde{x}_n^2 + \tilde{x}_n + 1} \right).
\]

By definition, \(\tilde{x}_n < 1 \), which implies

\[
1 - 3\tilde{x}_n < 1 - \frac{3\tilde{x}_n}{\tilde{x}_n^2 + \tilde{x}_n + 1} < 1 - \tilde{x}_n.
\]

Because \(x \leq -\ln(1 - x) \) for \(x \in (0, 1) \) we obtain

\[
-\ln \frac{\Delta_\infty}{\Delta_0} > -\sum_{n=0}^{\infty} \ln \left(1 - \tilde{x}_n \right) \geq \sum_{n=0}^{\infty} \tilde{x}_n.
\]

When \(\sum_{n=0}^{\infty} \tilde{x}_n \) diverges, the area of the limiting set \(T_\infty \) is zero and the sequence of Routh’s triangles converges to a point. It remains to show that the limiting point is \(G \), the centroid of \(T_0 \) in this case. Because of the rotational symmetry, \(G \) belongs to all the \(T_n \)’s. By the uniqueness of limits, \(G = T_\infty \).

In the case where \(\sum_{n=0}^{\infty} \tilde{x}_n \) converges, we choose an integer \(N \) so that \(\tilde{x}_n < 1/6 \) for \(n \geq N \). Using the inequality \(-\ln(1 - x) \leq 2x \) for \(x \in (0, 1/2) \), we obtain

\[
-\ln \frac{\Delta_\infty}{\Delta_0} \leq -\sum_{n=0}^{N-1} \ln \frac{(\tilde{x}_n - 1)^2}{\tilde{x}_n^2 + \tilde{x}_n + 1} - \sum_{n=N}^{\infty} \ln(1 - 3\tilde{x}_n)
\]

\[
\leq C + 6 \sum_{n=N}^{\infty} \tilde{x}_n.
\]
where \(C := - \sum_{n=0}^{N-1} \ln \frac{(\tilde{x}_n-1)^2}{\tilde{x}_n^2 + \tilde{x}_n + 1} \) is finite. We conclude that \(\Delta_\infty \neq 0 \), which means that the limit is a triangle. The proof of the theorem is complete.

Figure 2: An illustration of iterated Routh’s triangles constructed with \(x_n = y_n = z_n = (n+1)! \) for \(n \) ranging from 1 to 99. The sequence \((T_n)_{n \in \mathbb{Z}^+}\) converges fast to a triangle. Although only a few triangles are easily visible, there are in fact 99 iterated triangles in this picture.

Remark 6. The fact that the centroids of \(T_n \) and \(T_{n+1} \) coincide when \(x_n = y_n = z_n \) is well known. See, for instance, Theorem 3.6 in [20]. The reduction to the equilateral triangles, which we used in the course of the proof of Theorem 5, provides a short self-contained proof of this (affine invariant) result.

3 Dynamical system representation

We will next describe a dynamical system representation of the nested Routh’s triangles \(T_n \). To obtain this representation, we use mass point geometry and barycentric coordinates. In these coordinates, each point \(O \) within the interior of \(T_0 \) is described using a (unique) triple of non-negative numbers \((\alpha, \beta, \gamma)\) such that, considering points on the plane as vectors, \(O = \alpha A_0 + \beta B_0 + \gamma C_0 \) and \(\alpha + \beta + \gamma = 1 \). Notice that \(O \) is the center of mass of \(\triangle A_0B_0C_0 \) if for some \(k > 0 \) the mass \(k\alpha \) is put at the vertex \(A \), the mass \(k\beta \) at \(B \), and the mass \(k\gamma \) at \(C_0 \).

If we put weights \((y_n, y_n z_n, 1)\) at the vertexes \((A_n, B_n, C_n)\) of the triangle \(T_n \), then the intersection \(A_{n+1} \) of the lines \(B_nB_n' \) and \(C_nC_n' \) will be the center of mass of the triangle \(T_n \). Identifying \(A_k, B_k \) and \(C_k \) with vectors starting at the origin and ending at the points denoted by the corresponding capital letters, we therefore obtain

\[
A_{n+1} = \frac{1}{1 + y_n + y_n z_n} (y_n \cdot A_n + y_n z_n \cdot B_n + C_n) .
\]

Similarly,

\[
B_{n+1} = \frac{1}{1 + z_n + x_n z_n} \left(A_n + z_n \cdot B_n + x_n z_n \cdot C_n \right) ,
\]

\[
C_{n+1} = \frac{1}{1 + x_n + x_n y_n} \left(x_n y_n \cdot A_n + B_n + x_n \cdot C_n \right) .
\]

For formal 3-vectors, whose components are points in the plane within \(T_0 \), this can be put in a formal vector-matrix equation form as follows:

\[
(A_{n+1}, B_{n+1}, C_{n+1})^T = P_n (A_n, B_n, C_n)^T ,
\]
where the superscript T indicates that the triple is transposed, i.e. converted from a row to a column, and

$$P_n := \begin{pmatrix}
\frac{y_n}{1+y_n+y_nz_n} & \frac{y_nz_n}{1+y_n+y_nz_n} & \frac{1}{1+y_n+y_nz_n} \\
\frac{1}{1+z_n+x_nz_n} & \frac{z_n}{1+z_n+x_nz_n} & \frac{x_nz_n}{1+z_n+x_nz_n} \\
\frac{x_ny_n}{1+x_n+x_ny_n} & \frac{1}{1+x_n+x_ny_n} & \frac{x_n}{1+x_n+x_ny_n}
\end{pmatrix}. \quad (9)$$

Remark 7. Notice that, in accordance with Routh’s theorem (see, for instance, [11] or [7]), $\det P_n = R(x_n, y_n, z_n)$. In fact, it follows from (5) and the analogous formulas for B_{n+1} and C_{n+1} that (cf. [10, 19, 26, 35])

$$P_n = \frac{1}{\Delta_n} \begin{pmatrix}
\text{Area}(\Delta A_{n+1}B_{n}C_{n}) & \text{Area}(\Delta A_{n+1}C_{n}A_{n}) & \text{Area}(\Delta A_{n+1}A_{n}B_{n}) \\
\text{Area}(\Delta B_{n+1}B_{n}C_{n}) & \text{Area}(\Delta B_{n+1}C_{n}A_{n}) & \text{Area}(\Delta B_{n+1}A_{n}B_{n}) \\
\text{Area}(\Delta C_{n+1}B_{n}C_{n}) & \text{Area}(\Delta C_{n+1}C_{n}A_{n}) & \text{Area}(\Delta C_{n+1}A_{n}B_{n})
\end{pmatrix}.$$

In particular, $\text{tr} P_n = 1 - R(x_n, y_n, z_n)$. We remark that the characteristic equation associated with P_n is $\lambda^3 - \lambda^2 (1 - R(x_n, y_n, z_n)) - R(x_n, y_n, z_n) = 0$. Hence, the eigenvalues of P_n are the Perron-Frobenius value one and, in addition, two complex roots of the quadratic equation $\lambda^2 + \lambda R(x_n, y_n, z_n) + R(x_n, y_n, z_n) = 0$. These observations indicate that when cevian ratios (x_n, y_n, z_n) are chosen at random and form a stationary ergodic sequence, the distribution of the real-valued random variable $R(x_n, y_n, z_n)$ can serve to measure a “random capacity” of the iterative triangle process. The distribution is in principle directly available from the input data, the joint distribution of the cevian ratios (x_n, y_n, z_n). □

It follows by induction that for a general $n \in \mathbb{N}$,

$$(A_n, B_n, C_n)^T = P_{n-1}P_{n-2} \cdots P_0(A_0, B_0, C_0)^T \quad (10)$$

We remark that equations (5)-(8) and (10) can be alternatively interpreted as identities for the complex numbers A_n, B_n, C_n instead of the corresponding real vectors.

For $n \in \mathbb{Z}_+$, let

$$a_n = \overrightarrow{B_nC_n}, \quad b_n = \overrightarrow{C_nA_n}, \quad c_n = \overrightarrow{A_nB_n}, \quad (11)$$

and

$$u_n = \frac{1 - x_ny_nz_n}{(1 + z_n + x_nz_n)(1 + x_n + x_ny_n)},$$

$$v_n = \frac{1 - x_ny_nz_n}{(1 + y_n + y_nz_n)(1 + x_n + x_ny_n)},$$

$$w_n = \frac{1 - x_ny_nz_n}{(1 + y_n + y_nz_n)(1 + z_n + x_nz_n)}. \quad (12)$$
It follows from (5)-(7) that
\[
\begin{pmatrix}
 a_{n+1} \\
 b_{n+1} \\
 c_{n+1}
\end{pmatrix} =
\begin{pmatrix}
 0 & -x_n u_n & u_n \\
 v_n & 0 & -y_n v_n \\
 -z_n w_n & w_n & 0
\end{pmatrix}
\begin{pmatrix}
 a_n \\
 b_n \\
 c_n
\end{pmatrix}.
\tag{13}
\]

The matrix in (13) is the cofactor matrix of \(P_n \), and hence
\[
(a_{n+1}, b_{n+1}, c_{n+1}) = R(x_n, y_n, z_n)^{-1} \cdot (a_n, b_n, c_n) P_{n}^{-1}.
\]

Using the law of cosines, we deduce from (13) that
\[
\begin{pmatrix}
 |a_{n+1}|^2, |b_{n+1}|^2, |c_{n+1}|^2
\end{pmatrix}^T = Q_n \begin{pmatrix}
 |a_n|^2, |b_n|^2, |c_n|^2
\end{pmatrix}^T,
\tag{14}
\]
where
\[
Q_n := \frac{1}{2}
\begin{pmatrix}
 x_n u_n^2 & (2x_n^2 - x_n) u_n^2 & (2 - x_n) u_n^2 \\
 (2 - y_n) v_n^2 & y_n v_n^2 & (2y_n^2 - y_n) v_n^2 \\
 (2z_n^2 - z_n) w_n^2 & (2 - z_n) w_n^2 & z_n w_n^2
\end{pmatrix}.
\]

We will exploit (14) in Section 4 below.

The following is the main result of this section.

Theorem 8. Suppose that \(x_n = x, y_n = y, z_n = z \) for some \(x, y, z > 0 \) such that \(xyz \neq 1 \) and all \(n \in \mathbb{Z}_+ \). Then
\[
T_\infty = \frac{\theta_1}{\theta_1 + \theta_2 + \theta_3} A_0 + \frac{\theta_2}{\theta_1 + \theta_2 + \theta_3} B_0 + \frac{\theta_3}{\theta_1 + \theta_2 + \theta_3} C_0,
\tag{15}
\]
where
\[
\begin{align*}
\theta_1 &= (xy(1 + xz) + 1)(1 + y + yz), \\
\theta_2 &= (yz(1 + yx) + 1)(1 + z + xz), \\
\theta_3 &= (zx(1 + zy) + 1)(1 + x + xy).
\end{align*}
\tag{16}
\]

Proof. Let \(P \) denote the common value of the matrices \(P_n \) introduced in (9). Then (10) becomes \((A_n, B_n, C_n)^T = P^n (A_0, B_0, C_0)^T \). It is easy to verify that the vector \(\vec{\theta} := (\theta_1, \theta_2, \theta_3)^T \) is a left eigenvector of the matrix \(P \), namely
\[
\vec{\theta} = \vec{\theta} P.
\tag{17}
\]

For \(i = 1, 2, 3 \), let
\[
\pi_i = \theta_i (\theta_1 + \theta_2 + \theta_3)^{-1}.
\tag{18}
\]

By virtue of (17), the probability vector \(\vec{\pi} := (\pi_1, \pi_2, \pi_3) \) represents the stationary distribution of a Markov chain which evolves according to the transition kernel \(P \). It follows from (17) that \(P^n \) converges as \(n \to \infty \) to a matrix whose columns coincide and all three are equal to \((\pi_1, \pi_2, \pi_3)^T \). In the language of the Markov chains theory, the latter statement is
the claim that stationary distribution is also the limiting distribution of the Markov chain. The claim is true because \(P \) is a strictly positive matrix, and hence the associated Markov chain is ergodic (see, for instance, [6, 36] for details). Thus

\[
\lim_{n \to \infty} P^n \begin{pmatrix} A_0, B_0, C_0 \end{pmatrix}^T = \begin{pmatrix} \pi_1 & \pi_2 & \pi_3 \\ \pi_1 & \pi_2 & \pi_3 \\ \pi_1 & \pi_2 & \pi_3 \end{pmatrix} \begin{pmatrix} A_0 \\ B_0 \\ C_0 \end{pmatrix} = \begin{pmatrix} \pi_1 A_0 + \pi_2 B_0 + \pi_3 C_0 \\ \pi_1 A_0 + \pi_2 B_0 + \pi_3 C_0 \\ \pi_1 A_0 + \pi_2 B_0 + \pi_3 C_0 \end{pmatrix}.
\]

(19)

The proof is complete.

The above short proof of Theorem 8 relies on the convergence result for the matrix sequence \(P^n \). The result can be derived by using either a standard linear algebra argument or a probabilistic Markov chain reasoning. We believe it is illuminating to give an alternative proof of the theorem, based on the mass point geometry technique which appears to be more “authentic” in the context. In essence, the proof given below is a self-contained argument deducing the assertion of Theorem 8 from (17).

Alternative proof of Theorem 8. Pick any positive real numbers \(\alpha, \beta, \gamma > 0 \) and place mass \(\alpha y + \beta + \gamma xy \) on the vertex \(A_n \), mass \(\alpha yz + \beta z + \gamma \) on vertex \(B_n \), and mass \(\alpha + \beta xz + \gamma x \) on vertex \(C_n \). The analysis that led us to (10) shows that the mass can be redistributed preserving the center of mass between the vertices of the triangle \(T_{n+1} \) as follows: put mass \(\alpha (y + yz + 1) \) on the vertex \(A_{n+1} \), mass \(\beta (1 + z + xz) \) on vertex \(B_{n+1} \), and mass \(\gamma (xy + 1 + x) \) on vertex \(C_n \). The procedure can be iterated, in which case all the triangles \(T_n \) would have the same center of mass, provided that the following three conditions are satisfied (the mass put at the vertices of \(\Delta A_n B_n C_n \) and the corresponding vertices of \(\Delta A_{n+1} B_{n+1} C_{n+1} \) after the mass redistribution coincide):

\[
\begin{align*}
\alpha y + \beta + \gamma xy &= \alpha (y + yz + 1) & \text{matching mass at } A_n \text{ and } A_{n+1} \\
\alpha yz + \beta z + \gamma &= \beta (1 + z + xz) & \text{matching mass at } B_n \text{ and } B_{n+1} \\
\alpha + \beta xz + \gamma x &= \gamma (xy + 1 + x) & \text{matching mass at } C_n \text{ and } C_{n+1}
\end{align*}
\]

(20)

Considering \(\gamma > 0 \) as a given parameter and using the first two lines in (20), we obtain the following linear system for the parameters \(\alpha \) and \(\beta \):

\[
\begin{align*}
\alpha (1 + yz) - \beta &= \gamma xy \\
-\alpha yz + \beta (1 + xz) &= \gamma
\end{align*}
\]

The system has the following solution:

\[
\alpha = 1 + xy(1 + xz), \quad \beta = 1 + yz(1 + yx), \quad \gamma = 1 + zz(1 + zy)
\]

(21)

Set

\[
\theta_1 = \alpha (y + yz + 1), \quad \theta_2 = \beta (1 + z + xz), \quad \theta_3 = \gamma (xy + 1 + x)
\]

(22)

with \(\alpha, \beta, \gamma \) defined in (21). It follows from (20) that \(T_\infty \) introduced in (15) is the common center mass of triangles \(T_n, n \in \mathbb{Z}_+ \), and hence indeed is the limit point \(\bigcap_{n \in \mathbb{Z}_+} T_n \) of the triangles iterative process. The proof is complete.
To see the key technical connection between the two proofs of Theorem 8, observe that with $\mathbf{\theta}$ defined in (22), the linear system (20) is equivalent to (17). Note that (21) and (22) are consistent with (16).

Our next result gives a necessary condition for an inhomogeneous sequence of cevian ratios $(x_n, y_n, z_n)_{n \in \mathbb{Z}}$ to define nested Routh’s triangles converging to a single point T_∞ together with a rate of convergence.

Theorem 9. Let $\xi_n := \max_i \min_j P_n(i, j)$. If $\sum_{n=0}^{\infty} \xi_n = \infty$, then T_∞ is a single point and for any $n \in \mathbb{N},$

\[
\max\{ |A_n T_\infty|, |B_n T_\infty|, |C_n T_\infty| \} \\
\leq \prod_{k=0}^{n-1} (1 - \xi_k) \cdot \max\{ |A_0|, |B_0|, |C_0| \}.
\]

(23)

The result stated in the theorem is merely a rephrasing in our context of a well-known result for a product of stochastic matrices which has been stated in various forms in many papers and monographs. See, for instance, Section 2.A.2 in [36], [39], [1], or [6, Lemma 9] where different, suitable for general non-negative matrices, bounds ξ_i are used. In a similar form, with the same ξ_i, the above result is explicitly stated in [38, Lemma 3.3]. For the reader’s convenience, we will next outline a short proof of Theorem 9.

Let $i^* \in \{1, 2, 3\}$ be a state such that $\xi_n = \min_j P_n(i^*, j)$. By the assumptions of Theorem 9 matrix P_n satisfies Doeblin’s condition, namely $P_n(i, j) \geq \xi_n \delta^*(j)$, where δ^* is a probability vector in dimension 3 such that $\delta^*(j) = 1$ if $j = i^*$ and $\delta^*(j) = 0$ otherwise. Thus the convergence of the backward products $P_{n-1} \cdots P_0$ to a column stochastic matrix P_∞ follows, for example, from [29, Theorem A]. Each row of P_∞ form the same probability vector, say $\pi = (\pi_1, \pi_2, \pi_3)$. A contraction property of Doeblin’s stochastic kernels (in particular, strictly positive stochastic matrices), see [13, p. 197], implies then that $\|\nu P_\infty - \pi P_\infty\| \leq (1 - \xi_n)\|\nu - \pi\|$, where ν is any probability vector in dimension 3 and $\|\cdot\|$ is the total variation norm. Thus (cf. [36, 39])

\[
\max_j \sum_{i=1}^{3} |P_{n-1} \cdots P_0(i, j) - P_\infty(i, j)| \leq \prod_{k=0}^{n-1} (1 - \xi_k),
\]

which implies (23) with $T_\infty = \pi_1 A + \pi_2 B + \pi_3 C$ by triangle inequality.

4 Random iterations

In this section we consider the iteration of Routh’s triangles associated with random cevian ratios $(x_n, y_n, z_n)_{n \in \mathbb{Z}_+}$.

Proposition 10. Suppose cevian ratios $(x_n, y_n, z_n)_{n \in \mathbb{Z}_+}$ are sampled independently and identically from a joint distribution defined on $(0, \infty)^3$. Then T_∞ is a single point with probability one.
Proof. The conclusion follows readily if \(P(x_n y_n z_n = 1) > 0 \). Thus we will assume that \(x_n y_n z_n \neq 1 \) with probability one. Let \(d_n = \text{diam}(T_n) \), and recall that the diameter of a triangle is the length of its longest side. Thus we need to show that \(d_n \to 0 \), as \(n \to \infty \), under the conditions of the theorem. Let \(\gamma_n = \frac{d_n}{d_{n-1}} \). By the law of large numbers, with probability one,

\[
\lim_{n \to \infty} \frac{1}{n} \ln \left(\prod_{k=1}^{n} \gamma_n \right) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \gamma_n = E(\ln \gamma_1),
\]

where \(E \) denotes the expected value. Since the inclusion \(T_n \subset T_{n-1} \) is strict, we know that \(P(\ln \gamma_1 < 0) = 1 \). Therefore, \(E(\ln \gamma_1) = -a \) for some \(a > 0 \). With probability one, for all \(n \) sufficiently large (how large depends on the random realization of the sequence \(d_n \)), we have

\[
\frac{1}{n} \ln \frac{d_n}{d_0} = \frac{1}{n} \ln \left(\prod_{k=1}^{n} \gamma_n \right) < -\frac{a}{2}, \quad \text{and hence} \quad d_n < d_0 \exp \left(-\frac{na}{2} \right).
\]

Thus we have shown that \(d_n \to 0 \) as \(n \to \infty \). The proof is complete.

Remark 11. The assumption of independence in the conditions of Proposition 10 can be replaced by a weaker condition that the cevian triples form a stationary and ergodic sequence. The above proof goes through verbatim with Birkhoff’s ergodic theorem \([15]\) taking the place of the classical law of large numbers. Note that, in view of the Poincaré’s recurrence theorem \([17]\), if \(P(x_n y_n z_n = 1 > 0) \) then the number of iterations before reaching a degenerate triangle (a point) is finite with probability one. We remark that an alternative proof of Proposition 10 (or its extension to a stationary and ergodic sequence of cevian triples) can be given by applying the result in Theorem 9 to a stationary and ergodic sequence \(\xi_n \) which is introduced in the statement of the theorem.

Recall that the distribution of a random vector \((x_n, y_n, z_n) \in \mathbb{R}^3\) is called exchangeable if for any permutation of \((x_n, y_n, z_n)\) the joint probability distribution of the permuted triple is the same as the joint probability distribution of the original one \([15]\). The following theorem is the main result of this section. It can be considered as a probabilistic counterpart of Theorem 5.

Theorem 12. Under the conditions of Proposition 10, if the common distribution of the vectors \((x_n, y_n, z_n), n \in \mathbb{Z}_+,\) is exchangeable then the expected value \(E(T_\infty) \) is the centroid of \(T_0 \).

Proof. Taking the expectation in (10) and using the linearity property of the expectation one can show by induction that for any \(n \in \mathbb{N} \),

\[
(E(A_n), E(B_n), E(C_n))^T = K^n (A_0, B_0, C_0)^T,
\]

where \(K := E(P_n) \) is a matrix whose entries are the expected values of the corresponding entries of \(P_n \). Since the distribution of \((x_n, y_n, z_n)\) is exchangeable, \(K \) is a double-stochastic matrix, that is the sum of the entries in each row and column is one. The claim follows from
the fact that the probability vector \(\frac{1}{3}(1, 1, 1)^T \) is the left Perron-Frobenius eigenvector of \(K \), and hence (compare to (19) and see the discussion above it)

\[
\lim_{n \to \infty} K^n = \begin{pmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3
\end{pmatrix}.
\]

The proof of the theorem is complete. □

Recall \(a_n, b_n, c_n \) from (11). We conclude this section with the following theorem collecting several results on the rate of convergence of a random sequence \(T_n \) to a random limit point \(T_\infty \). For \(n \in \mathbb{Z}^+ \), let

\[
\chi_n = E(\Delta_n) \quad \text{and} \quad \eta_n = \max\{|a_n|^2, |b_n|^2, |c_n|^2\}.
\]

Theorem 13.

(i) Assume that \((x_n, y_n, z_n)_{n \in \mathbb{Z}^+}\) is a stationary and ergodic random sequence. Then, with probability one,

\[
\lim_{n \to \infty} \frac{1}{n} \log \Delta_n = E(\log R(x_0, y_0, z_0)), \quad (24)
\]

\[
\lim_{n \to \infty} \frac{1}{n} \log \eta_n = \lambda, \quad (25)
\]

for some \(\lambda < 0 \).

(ii) If \((x_n, y_n, z_n)_{n \in \mathbb{Z}^+}\) is an i.i.d. sequence, then

\[
\chi_n = \left\{ E(R(x_0, y_0, z_0)) \right\}^n \Delta_0, \quad n \in \mathbb{N},
\]

\[
\lim_{n \to \infty} \frac{1}{n} \log E(|a_n|^2) = \lim_{n \to \infty} \frac{1}{n} \log E(|b_n|^2) = \lim_{n \to \infty} \frac{1}{n} \log E(|c_n|^2) = \delta
\]

for some \(\delta < 0 \).

(iii) Under the conditions of Proposition 10, \(\delta \) in (27) is given by

\[
\delta = \log E(u_0^2(x_0^2 - x_0 + 1)), \quad (28)
\]

where \(u_0 \) is introduced in (12). In fact, in this case,

\[
\lim_{n \to \infty} e^{-n\delta} E(|a_n|^2) = \lim_{n \to \infty} e^{-n\delta} E(|b_n|^2) = \lim_{n \to \infty} e^{-n\delta} E(|c_n|^2) = \frac{1}{3} E(|a_n|^2 + |b_n|^2 + |c_n|^2)
\]

Furthermore, if in addition there exists \(\varepsilon > 0 \) such that \(P(P_0(i, j) \in (\varepsilon, 1 - \varepsilon)) = 1 \) for all \(i, j \in \{1, 2, 3\} \) (for instance, with probability one, \(x_0, y_0, \) and \(z_0 \) are uniformly bounded away from zero and from infinity), then (25) can be strengthened to

\[
\lim_{n \to \infty} \frac{1}{n} \log |a_n| = \lim_{n \to \infty} \frac{1}{n} \log |b_n| = \lim_{n \to \infty} \frac{1}{n} \log |c_n| = \frac{\lambda}{2}
\]

(30)
Proof.

(i) The result in (24) follows immediately from the Birkhoff ergodic theorem and Routh’s theorem. The result in (25) for some $\lambda < 0$ is a direct implication of (14) along with the Furstenberg-Kesten theorem for products of random matrices [16]. The same argument as we used to establish Proposition 10 (see also Remark 11) shows that $\lambda < 0$.

(ii) The identity in (26) is evident from Routh’s theorem. The limit result in (27) for some $\delta < 0$ follows from (14) by taking the expectation on both the sides of the equation. Moreover, $\delta = \log \lambda_Q$ where $\lambda_Q > 0$ is the Perron-Frobenius eigenvalue of the 3×3 matrix $H := E(Q_0)$ whose entries are expectations of the corresponding entries of Q_0. Indeed, for some positive reals f_1, f_2, f_3 and $f := (f_1, f_2, f_3) \in \mathbb{R}^3$ we have $Hf = \lambda_Q f$. Then by virtue of (14) for any real constant $c > 0$ such that

$$c^{-1}f_1 < E(|a_n|^2) < cf_1, \quad c^{-1}f_2 < E(|b_n|^2) < cf_2, \quad c^{-1}f_3 < E(|c_n|^2) < cf_3,$$

we have (the vector inequalities below is a notation to denote that the corresponding inequalities hold component-wise)

$$c^{-1}\lambda_Q f < (E(|a_n|^2), E(|a_n|^2), E(|a_n|^2))^T = H^n(|a_0|^2, |b_0|^2, |c_0|^2)^T < c\lambda_Q^n f,$$

from which the claim in (27) readily follows with $\delta = \log \lambda_Q$.

(iii) Recall that $\delta = \log \lambda_Q$. It is not hard to verify that under the conditions of Proposition 10, we have $\lambda_Q = E(u_n^2(x_n^2 - x_n + 1))$, which is the sum of the elements in a row of $H := E(Q_n)$. It follows that $\lambda_Q^{-1}H$ is a double-stochastic matrix, and hence

$$\lim_{n \to \infty} e^{-n\delta} (E(|a_n|^2), E(|b_n|^2), E(|c_n|^2))^T = \lim_{n \to \infty} (\lambda_Q^{-1}H)^n (E(|a_0|^2), E(|b_0|^2), E(|c_0|^2))^T = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix} \begin{pmatrix} E(|a_0|^2), E(|b_0|^2), E(|c_0|^2) \end{pmatrix}^T.$$

Finally, (30) follows from the Corollary on p. 462 of [16].

Heuristically, Theorem 13 states that the rate of convergence of the sequence T_n to the limit T_0 is exponential. We conclude this section with the observation that in addition to the results listed in the theorem, (23) implies that when $(x_n, y_n, z_n)_{n \in \mathbb{Z}^+}$ and hence also $(\xi_n)_{n \in \mathbb{Z}^+}$ are stationary and ergodic sequences,

$$\limsup_{n \to \infty} \frac{1}{n} \log \max \{ |A_nT_\infty^\rightarrow|, |B_nT_\infty^\rightarrow|, |C_nT_\infty^\rightarrow| \} \leq E(\log \xi_0) < 0$$
5 A job allocation interpretation

The goal of this section is to describe two job allocation procedures connected to the Routh’s triangle iteration process. The second one provides a curious interpretation of the limit T_∞ in Theorem 8.

First, we observe that cevian ratios (x, y, z) satisfying the condition $xyz = 1$ can be identified with deterministic Nash equilibria in the following 3-person game. The underlying idea is expressed by the identities in (31) below, and it utilizes a geometric lemma which is referred to in [19] as an “area principle”.

Suppose that players Alice (aka A), Bob (B), and Colette (C) have a job assignment to complete, and they want to divide the workload fairly. Assume that the total amount of work to be done is one unit and denote the portion of the work allocated to a player X by W_X, where $X \in \{A, B, C\}$. The respective strategies of the players A, B, C are positive reals x, y, z. The strategies are interpreted as a suggestion of the player with regard to how the portion of the work which is allocated to the two other players should be divided. More specifically, if the triple (x, y, z) satisfies Ceva’s condition $xyz = 1$ and the associated cevians intersect at a point O within T_0, the work is divided between the players in such a way that

$$W_A = \text{Area}(\triangle B_0C_0O), \quad W_B = \text{Area}(\triangle C_0A_0O), \quad W_C = \text{Area}(\triangle A_0B_0O),$$

and hence [19]

$$\frac{W_B}{W_C} = x, \quad \frac{W_C}{W_A} = y, \quad \frac{W_A}{W_B} = z. \quad (31)$$

If Ceva’s condition is not satisfied, we look at the iterative triangle process associated with the cevian ratios $(x_n, y_n, z_n) = (x, y, z)$ for all $n \in \mathbb{Z}_+$ and set

$$W_A = \sum_{n=0}^{\infty} \text{Area}(\triangle B_nC_nA_{n+1}) = \frac{y}{1 + y + yz} \sum_{n=0}^{\infty} R(x, y, z)^n = \frac{y}{1 + y + yz} \cdot \frac{1}{1 - R(x, y, z)},$$

and, similarly,

$$W_B = \sum_{n=0}^{\infty} \text{Area}(\triangle C_nA_nB_{n+1}) = \frac{z}{1 + z + xz} \cdot \frac{1}{1 - R(x, y, z)},$$

$$W_C = \sum_{n=0}^{\infty} \text{Area}(\triangle A_nB_nC_{n+1}) = \frac{x}{1 + x + xy} \cdot \frac{1}{1 - R(x, y, z)}.$$

Assume that each player $X \in \{A, B, C\}$ minimizes their workload W_X. Recall that a vector of strategies (x, y, z) is called a Nash equilibrium of the above game if no player benefits from a unilateral change when the remaining two players maintain their strategies fixed [18]. Clearly, a triple $(x, y, z) \in (0, \infty)^3$ is a Nash equilibrium if and only if $R(x, y, z) = 0$, that is $xyz = 1$.

14
Consider now the following modification of the above game-theoretic framework. Assume that a certain job, say cleaning a rented apartment, must be done on a daily basis and takes one person to accomplish. Three roommates, Alice, Bob, and Colette want to devise a long-term schedule. For \(n \in \mathbb{Z}_+ \), let \(X_n \) be the person assigned to the job at day \(n \). For \(X \in \{A, B, C\} \) let

\[
\pi_X = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n} 1(X_k = X),
\]

(32)

provided that the above limit exists. As before, the strategies \(x, y, z \) serve as “recommendations” from the players on how the job should be divided. Specifically, the roommates assign the cleaning job at random so that \(X_n \) is a Markov chain with a \(3 \times 3 \) transition kernel

\[
P(i, j) := P(X_{n+1} = j|X_n = i),
\]

where \(P \) is \(P_n \) defined in (9) with \(x_n = x, y_n = y, z_n = z \), and we identify \(A \) with state 1, \(B \) with state 2, and \(C \) with state 3 of the Markov chain. By the ergodic theorem, the limits in (32) exist and, moreover,

\[
\pi_A(x, y, z) = \pi_1, \quad \pi_B(x, y, z) = \pi_2, \quad \pi_C(x, y, z) = \pi_3,
\]

(33)

where \(\pi_i, i = 1, 2, 3 \), are defined in (18). In particular, if the triple \((x, y, z)\) satisfies Ceva’s condition, we have \(\pi_B/\pi_C = x, \pi_C/\pi_A = y, \) and \(\pi_A/\pi_B = z \). It turns out that if the goal of each player is to minimize the asymptotic average workload, the only deterministic Nash equilibrium in the game is \((x, y, z) = (1, 1, 1)\).

Theorem 14. Consider a 3-person game where the strategy of a player \(X \in \{A, B, C\} \) is a positive real number and the (negative) payoff associated with a vector of strategies \((x, y, z) \in (0, \infty)^3\) is \(-\pi_X(x, y, z)\), with \(\pi_X \) given by (33). Then the only deterministic Nash equilibrium in the game is the “fair division” \(x = y = z = 1 \).

Proof. Suppose that \((x, y, z)\) is a Nash equilibrium. Assume in addition that \(xyz \neq 1 \). Since player \(A \) prefers \(x \) over \(y^{-1}z^{-1} \), we have \(\pi_A \leq \frac{y}{1+y+yz} \). Similarly, it must be the case that \(\pi_B \leq \frac{z}{1+z+xz} \) and \(\pi_C \leq \frac{x}{1+y+xy} \). But then

\[
1 = \pi_A + \pi_B + \pi_C \leq \frac{y}{1+y+yz} + \frac{z}{1+z+xz} + \frac{x}{1+y+xy}
\]

\[
= 1 - R(x, y, z),
\]

which is only possible if \(R(x, y, z) = 0 \). The latter assertion however contradicts the assumption \(xyz \neq 1 \).

Thus we can assume without loss of generality that \(xyz = 1 \). Since player \(A \) prefers \(x = y^{-1}z^{-1} \) over any other value of \(x > 0 \), it must be the case that for all \(u > 0 \),

\[
\frac{y}{1+y+yz} \leq \frac{(uy(1+uz) + 1)(1+y+yz)}{uy(1+uz) + 1 + y + yz + yz(1+yu) + 1 + z + uz + 2yu(1+yz) + 1 + u + uz)}
\]

(34)

Since \(u = y^{-1}z^{-1} \) is a minimizer of the right-hand side, the derivative of the expression in the right hand side with respect to \(u \) is equal to zero at \(u = y^{-1}z^{-1} \). A little algebra shows that the latter condition is equivalent to \(x = y^{-1}z^{-1} = 1 \). Using similar arguments for \(\pi_B \) and \(\pi_C \), one can deduce that \(y = z = 1 \).
So far we have shown that if there is a Nash equilibrium, it must be \((1, 1, 1)\). To complete the proof it remains to verify that \((x, y, z) = (1, 1, 1)\) is indeed a Nash equilibrium. Instead of checking second order derivatives, we will directly verify \([34]\) with \((y, z) = (1, 1)\). To this end it suffices to show that

\[
\frac{1}{3} \leq \frac{3(1 + u + u^2)}{3(1 + u + u^2) + (2 + u)^2 + (2u + 1)^2}
\]

It is easy to see that the last inequality is equivalent to the trivial \((u - 1)^2 \geq 0\), and therefore holds true. The proof of the theorem is complete.

\[\square\]

References

