An asymptotic multipartite Kühn-Osthus theorem

Ryan R. Martin1 Richard Mycroft2 Jozef Skokan3

1Iowa State University 2University of Birmingham 3London School of Economics

08 August 2017

Algebraic and Extremal Graph Theory
University of Delaware, Newark, DE

Martin’s research partially supported by:

NSF grant DMS-0901008, NSA grant H982320-13-1-0226, Simons Foundation grant #353292

and an Iowa State University Faculty Development Grant.
This talk is based on joint work with:

Richard Mycroft
University of Birmingham

Jozef Skokan
London School of Economics
The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \geq \left(1 - \frac{1}{k}\right)n$$

then G contains a subgraph which consists of $\lfloor n/k \rfloor$ vertex-disjoint copies of K_k.

Notes

$k = 2$ follows from Dirac $k = 3$ proven by Corrádi & Hajnal 1963
The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \geq \left(1 - \frac{1}{k}\right) n$$

then G contains a subgraph which consists of $\lfloor n/k \rfloor$ vertex-disjoint copies of K_k.

This is a K_k-tiling.
The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \geq \left(1 - \frac{1}{k}\right)n$$

then G contains a subgraph which consists of $\left\lfloor \frac{n}{k} \right\rfloor$ vertex-disjoint copies of K_k.

This is a K_k-tiling or a K_k-factor or even a K_k-packing.
Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \geq \left(1 - \frac{1}{k}\right)n$$

then G contains a subgraph which consists of $\lfloor n/k \rfloor$ vertex-disjoint copies of K_k.

This is a K_k-tiling or a K_k-factor or even a K_k-packing. We will use “tiling” most often.
Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum degree $\delta(G) \geq \left(1 - \frac{1}{k}\right)n$, then G contains a subgraph which consists of $\left\lfloor \frac{n}{k} \right\rfloor$ vertex-disjoint copies of K_k.

This is a K_k-tiling or a K_k-factor or even a K_k-packing. We will use “tiling” most often.

Notes
- $k = 2$ follows from Dirac
Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \geq \left(1 - \frac{1}{k}\right) n$$

then G contains a subgraph which consists of $\lfloor n/k \rfloor$ vertex-disjoint copies of K_k.

This is a K_k-tiling or a K_k-factor or even a K_k-packing. We will use “tiling” most often.

Notes

- $k = 2$ follows from Dirac
- $k = 3$ proven by Corrádi & Hajnal 1963
The Alon-Yuster theorem

Theorem (Alon-Yuster, 1992)

For any $\alpha > 0$ and graph H, there exists an $n_0 = n_0(\alpha, H)$ such that in any graph G on $n \geq n_0$ vertices with

$$\delta(G) \geq \left(1 - \frac{1}{\chi(H)}\right)n + \alpha n$$

there is an H-tiling of G if $|V(H)|$ divides n.

Theorem (Kühn-Osthus, 2009)

For any graph H, there exists an $n_0 = n_0(H)$ and a constant $C = C(H)$ such that in any graph G on $n \geq n_0$ vertices with

$$\delta(G) \geq \left(1 - \frac{1}{\chi^*(H)}\right)n + C$$

there is an H-tiling of G if $|V(H)|$ divides n.

This result is best possible, up to the constant C.

But what is $\chi^*(H)$?
The Alon-Yuster theorem

Theorem (Alon-Yuster, 1992)

For any $\alpha > 0$ and graph H, there exists an $n_0 = n_0(\alpha, H)$ such that in any graph G on $n \geq n_0$ vertices with

$$\delta(G) \geq \left(1 - \frac{1}{\chi(H)}\right)n + \alpha n$$

there is an H-tiling of G if $|V(H)|$ divides n.

Komlós, Sárközy and Szemerédi, 2001, showed that αn can be replaced by $C = C(H)$, but not eliminated entirely.
The Alon-Yuster theorem

Theorem (Alon-Yuster, 1992)

For any $\alpha > 0$ and graph H, there exists an $n_0 = n_0(\alpha, H)$ such that in any graph G on $n \geq n_0$ vertices with

$$\delta(G) \geq \left(1 - \frac{1}{\chi(H)}\right)n + \alpha n$$

there is an H-tiling of G if $|V(H)|$ divides n.

Theorem (Kühn-Osthus, 2009)

For any graph H, there exists an $n_0 = n_0(H)$ and a constant $C = C(H)$ such that in any graph G on $n \geq n_0$ vertices with

$$\delta(G) \geq \left(1 - \frac{1}{\chi^*(H)}\right)n + C$$

there is an H-tiling of G if $|V(H)|$ divides n.

This result is best possible, up to the constant C.

But what is $\chi^*(H)$?

Martin (Iowa State University University of Birmingham London School of Economics)
The Alon-Yuster theorem

Theorem (Kühn-Osthus, 2009)

For any graph H, there exists an $n_0 = n_0(H)$ and a constant $C = C(H)$ such that in any graph G on $n \geq n_0$ vertices with

$$\delta(G) \geq \left(1 - \frac{1}{\chi^*(H)}\right)n + C$$

there is an H-tiling of G if $|V(H)|$ divides n.

This result is best possible, up to the constant C.

But what is $\chi^*(H)$?
Critical chromatic number

Definition

Let H be a graph with

- order: $h = |V(H)|$
- chromatic number: $\chi = \chi(H)$
Critical chromatic number

Definition

Let H be a graph with

- order: $h = |V(H)|$
- chromatic number: $\chi = \chi(H)$
- $\sigma = \sigma(H)$ is the order of the smallest color class of H among all proper χ-colorings of $V(H)$.
Critical chromatic number

Definition

Let H be a graph with

- order: $h = |V(H)|$
- chromatic number: $\chi = \chi(H)$
- $\sigma = \sigma(H)$ is the order of the smallest color class of H among all proper χ-colorings of $V(H)$.

The critical chromatic number of H, is $\chi_{cr} = \chi_{cr}(H) = \frac{(\chi-1)h}{h-\sigma}$
Critical chromatic number

Definition

Let H be a graph with

- order: $h = |V(H)|$
- chromatic number: $\chi = \chi(H)$
- $\sigma = \sigma(H)$ is the order of the smallest color class of H among all proper χ-colorings of $V(H)$.

The critical chromatic number of H, is $\chi_{cr} = \chi_{cr}(H) = \frac{(\chi - 1)h}{h - \sigma}$

Fact

For any graph H:

$$\chi(H) - 1 < \chi_{cr}(H) \leq \chi(H)$$
Critical chromatic number

Definition

Let \(H \) be a graph with
- order: \(h = |V(H)| \)
- chromatic number: \(\chi = \chi(H) \)
- \(\sigma = \sigma(H) \) is the order of the smallest color class of \(H \) among all proper \(\chi \)-colorings of \(V(H) \).

The critical chromatic number of \(H \), is \(\chi_{cr} = \chi_{cr}(H) = \frac{(\chi-1)h}{h-\sigma} \)

Fact

For any graph \(H \):

\[
\chi(H) - 1 < \chi_{cr}(H) \leq \chi(H)
\]

Also, \(\chi_{cr}(H) = \chi(H) \) iff every proper \(\chi \)-coloring of \(H \) is a equipartition.

\(\chi_{cr}(H) \) was defined by Komlós, 2000.
Critical chromatic number

Definition

Let H be a graph with

- order: $h = |V(H)|$
- chromatic number: $\chi = \chi(H)$
- $\sigma = \sigma(H)$ is the order of the smallest color class of H among all proper χ-colorings of $V(H)$.

The critical chromatic number of H, is $\chi_{cr} = \chi_{cr}(H) = \frac{(\chi-1)h}{h-\sigma}$

$$\chi^*(H) = \begin{cases} \chi_{cr}(H), & \text{if } \gcd(H) = 1; \\ \chi(H), & \text{else.} \end{cases}$$

where $\gcd(H)$ is basically the gcd of the differences of the color classes in proper colorings of H.

Definitions

Definition
The family of \(k \)-partite graphs with \(n \) vertices in each part is denoted \(\mathcal{G}_k(n) \).

Definition
The natural bipartite subgraphs of \(G \) are the ones induced by the pairs of classes of the \(k \)-partition.

Definition
If \(G \in \mathcal{G}_k(n) \), let \(\hat{\delta}_k(G) \) denote the minimum degree among all of the natural bipartite subgraphs of \(G \).
Multipartite Hajnal-Szemerédi

The asymptotic Hajnal-Szemerédi theorem was solved with two different methods:

Theorem (Keevash-Mycroft, 2013; Lo-Markström, 2013)

Let $k \geq 2$ and $\epsilon > 0$. There exists an $n_0 = n_0(k, \epsilon)$ such that if $n \geq n_0$, $G \in G_k(n)$ and if

$$\hat{\delta}_k(G) \geq \left(1 - \frac{1}{k}\right) n + \epsilon n,$$

then G has a K_k-tiling.

Hypergraph blow-up; Absorbing method
The asymptotic Hajnal-Szemerédi theorem was solved with two different methods:

Theorem (Keevash-Mycroft, 2013; Lo-Markström, 2013)

Let \(k \geq 2 \) and \(\epsilon > 0 \). There exists an \(n_0 = n_0(k, \epsilon) \) such that if \(n \geq n_0 \), \(G \in G_k(n) \) and if

\[
\hat{\delta}_k(G) \geq \left(1 - \frac{1}{k}\right)n + \epsilon n,
\]

then \(G \) has a \(K_k \)-tiling.

Hypergraph blow-up; Absorbing method
The asymptotic Hajnal-Szemerédi theorem was solved with two different methods:

Theorem (Keevash-Mycroft, 2013; Lo-Markström, 2013)

Let $k \geq 2$ and $\epsilon > 0$. There exists an $n_0 = n_0(k, \epsilon)$ such that if $n \geq n_0$, $G \in G_k(n)$ and if

$$\hat{\delta}_k(G) \geq \left(1 - \frac{1}{k}\right)n + \epsilon n,$$

then G has a K_k-tiling.

Hypergraph blow-up; Absorbing method
In a longer manuscript, Keevash and Mycroft settle the multipartite Hajnal-Szemerédi case for large n:

Let $k \geq 2$. There exists an $n_0 = n_0(k)$ such that if $n \geq n_0$, $G \in G_k(n)$ and if

$$\hat{\delta}_k(G) \geq \left(1 - \frac{1}{k}\right)n,$$

then G has a K_k-tiling or both k and n/k are odd integers and $G \approx \Gamma_k(n/k)$.

The case of $k = 3$ was solved by Magyar-M. (2002). The case of $k = 4$ was solved by M.-Szemerédi (2008).

The graph $\Gamma_k(n/k)$ is one of Catlin’s “Type 2” graphs.
Catlin’s Type 2 Graphs

Catlin’s Type 2 graph.

The red indicates non-edges between graph classes.
Theorem (Zhao, 2009)

Let \(h \) be a positive integer. There exists an \(n_0 = n_0(h) \) such that if \(n \geq n_0, h \mid n \), and \(G \in \mathcal{G}_2(n) \) with

\[
\delta(G) = \delta_2(G) \geq \begin{cases}
\frac{1}{2}n + h - 1, & \text{if } n/h \text{ is odd;} \\
\frac{1}{2}n + \frac{3h}{2} - 2, & \text{if } n/h \text{ is even},
\end{cases}
\]

then \(G \) has a perfect \(K_{h,h} \)-tiling.

Moreover, there are examples that prove that this \(\delta_2 \) condition cannot be improved.
Toward Kühn-Osthus

Theorem (Bush-Zhao, 2012)

Let \(H \) be a bipartite graph. There exists an \(n_0 = n_0(H) \) and \(c = c(H) \) such that if \(n \geq n_0 \), \(|V(H)| | n \), and \(G \in \mathcal{G}_2(n) \) with

\[
\delta(G) \geq \begin{cases}
\left(1 - \frac{1}{\chi^*(H)}\right)n + c, & \text{if } \gcd(H) = 1 \text{ or } \gcd_{cc}(H) > 1; \\
\left(1 - \frac{1}{\chi(H)}\right)n + c, & \text{if } \gcd(H) > 1 \text{ and } \gcd_{cc}(H) = 1,
\end{cases}
\]

then \(G \) has a perfect \(H \)-tiling.

The quantity \(\gcd_{cc}(H) \) counts the gcd of the sizes of the connected components of \(H \).
Our results

Theorem (M.-Skokan, 2013+)

Let $k \geq 2$, H be a graph with $\chi(H) = k$ and $\epsilon > 0$. There exists an $n_0 = n_0(H, \epsilon)$ such that if $n \geq n_0$, $G \in G_k(n)$ and if

$$\hat{\delta}_k(G) \geq \left(1 - \frac{1}{\chi(H)}\right)n + \epsilon n,$$

then G has an H-tiling.

This, of course, contains the asymptotic Hajnal-Szemerédi case.
Our results

Theorem (M.-Skokan, 2013+)

Let $k \geq 2$, H be a graph with $\chi(H) = k$ and $\epsilon > 0$. There exists an $n_0 = n_0(H, \epsilon)$ such that if $n \geq n_0$, $G \in G_k(n)$ and if

$$\hat{\delta}_k(G) \geq \left(1 - \frac{1}{\chi(H)}\right) n + \epsilon n,$$

then G has an H-tiling.

This, of course, contains the asymptotic Hajnal-Szemerédi case.
Our results

Theorem (M.-Mycroft-Skokan, 2015+)

Let \(k \geq 2, \ H \) be a graph with \(\chi(H) = k, \ \chi^* = \chi^*(H) \) and \(\epsilon > 0 \). There exists an \(n_0 = n_0(H, \epsilon) \) such that if \(n \geq n_0, \ G \in G_k(n) \) and if

\[
\hat{\delta}_k(G) \geq \left(1 - \frac{1}{\chi^*(H)} \right) n + \epsilon n,
\]

then \(G \) has an \(H \)-tiling.

The main tool is linear programming.
Linear programming

Definition

For any graph G, let $\mathcal{T}_k(G)$ denote the set of k-cliques of G. The \textbf{FRACTIONAL K_k-TILING NUMBER}, $\tau^*_k(G)$ is:

$$\tau^*_k(G) = \begin{cases}
\max & \sum_{T \in \mathcal{T}_k(G)} w(T) \\
\text{s.t.} & \sum_{T \in \mathcal{T}_k(G), T \ni v} w(T) \leq 1, \quad \forall v \in V(G), \\
& w(T) \geq 0, \quad \forall T \in \mathcal{T}_k(G).
\end{cases}$$
Linear programming

Definition

For any graph G, let $\mathcal{T}_k(G)$ denote the set of k-cliques of G. The **fractional K_k-tiling number**, $\tau^*_k(G)$ is:

$$\tau^*_k(G) = \max_{\sum_{T \in \mathcal{T}_k(G)} w(T)} \left\{ \begin{array}{l} \text{s.t.} \sum_{T \in \mathcal{T}_k(G), T \ni v} w(T) \leq 1, \quad \forall v \in V(G), \\ w(T) \geq 0, \quad \forall T \in \mathcal{T}_k(G). \end{array} \right.$$

Theorem

Let $k \geq 2$. If $G \in \mathcal{G}_k(n)$ and $\delta_k(G) \geq (k - 1)n/k$, then $\tau^*_k(G) = n$.

\[\Box\]
Linear programming

Definition

\[\tau^*_k(G) = \begin{cases}
\max & \sum_{T \in \mathcal{T}_k(G)} w(T) \\
\text{s.t.} & \sum_{T \in \mathcal{T}_k(G), T \ni v} w(T) \leq 1, \quad \forall v \in V(G), \\
& w(T) \geq 0, \quad \forall T \in \mathcal{T}_k(G).
\end{cases} \]

Theorem

Let \(k \geq 2 \). If \(G \in \mathcal{G}_k(n) \) and \(\hat{\delta}_k(G) \geq (k - 1)n/k \), then \(\tau^*_k(G) = n \).

The proof is by induction on \(k \) and uses both the Duality Theorem and Complementary Slackness Theorem of LPs.
Linear programming

Theorem

Let $k \geq 2$. If $G \in G_k(n)$ and $\delta_k(G) \geq (k - 1)n/k$, then $\tau_k^*(G) = n$.

The proof is by induction on k and uses both the Duality Theorem and Complementary Slackness Theorem of LPs.

Duality Theorem:

$$\tau_k^*(G) = \begin{cases} \max & \sum w(T) \\ \text{s.t.} & \sum_{T \ni v} w(T) \leq 1, \ \forall v, \\ w(T) \geq 0, \quad \forall T. \end{cases} = \begin{cases} \min & \sum x(v) \\ \text{s.t.} & \sum_{v \in T} x(v) \geq 1, \ \forall T, \\ x(v) \geq 0, \quad \forall v. \end{cases}$$
Theorem

Let \(k \geq 2 \). If \(G \in \mathcal{G}_k(n) \) and \(\hat{\delta}_k(G) \geq (k - 1)n/k \), then \(\tau^*_k(G) = n \).

The proof is by induction on \(k \) and uses both the Duality Theorem and Complementary Slackness Theorem of LPs.

Duality Theorem:

\[
\tau^*_k(G) = \begin{cases}
\max & \sum_{T \ni v} w(T) \\
\text{s.t.} & \sum_{T \ni v} w(T) \leq 1, \forall v, \quad \forall T, \quad w(T) \geq 0, \quad \forall T.
\end{cases}
= \begin{cases}
\min & \sum_{v \in T} x(v) \\
\text{s.t.} & \sum_{v \in T} x(v) \geq 1, \forall T, \\
x(v) \geq 0, \quad \forall v.
\end{cases}
\]

UB: \(\tau^*_k(G) \leq n \).

Setting \(x(v) \equiv 1/k \) gives a feasible solution to the minLP, so \(\tau^*_k(G) \leq (kn) \cdot (1/k) = n \).
Linear programming

Theorem

Let $k \geq 2$. If $G \in \mathcal{G}_k(n)$ and $\hat{\delta}_k(G) \geq (k - 1)n/k$, then $\tau_k^*(G) = n$.

$$
\tau_k^*(G) = \left\{ \begin{array}{c}
\max \\
\text{s.t.}
\end{array} \right. \begin{array}{c}
\sum w(T) \\
\sum_{T \ni v} w(T) \leq 1, \quad \forall v, \\
w(T) \geq 0, \quad \forall T.
\end{array}
$$

UB: $\tau_k^*(G) \leq n$. Setting $x(v) \equiv 1/k$ gives a feasible solution to the minLP, so $\tau_k^*(G) \leq (kn) \cdot (1/k) = n$.

LB: $\tau_k^*(G) \geq n$. Base Case: $k = 2$.

UB: $\tau_k^*(G) \leq n$. Setting $x(v) \equiv 1/k$ gives a feasible solution to the minLP, so $\tau_k^*(G) \leq (kn) \cdot (1/k) = n$.

LB: $\tau_k^*(G) \geq n$. Base Case: $k = 2$.

UB: $\tau_k^*(G) \leq n$. Setting $x(v) \equiv 1/k$ gives a feasible solution to the minLP, so $\tau_k^*(G) \leq (kn) \cdot (1/k) = n$.

LB: $\tau_k^*(G) \geq n$. Base Case: $k = 2$.

UB: $\tau_k^*(G) \leq n$. Setting $x(v) \equiv 1/k$ gives a feasible solution to the minLP, so $\tau_k^*(G) \leq (kn) \cdot (1/k) = n$.

LB: $\tau_k^*(G) \geq n$. Base Case: $k = 2$.
Linear programming

\[
\tau_k^*(G) = \begin{cases}
\max & \sum w(T) \\
\text{s.t.} & \sum_{T \ni v} w(T) \leq 1, \forall v, \\
& w(T) \geq 0, \forall T.
\end{cases} = \begin{cases}
\min & \sum x(v) \\
\text{s.t.} & \sum_{v \in T} x(v) \geq 1, \forall T, \\
x(v) \geq 0, \forall v.
\end{cases}
\]

UB: \(\tau_k^*(G) \leq n \).

Setting \(x(v) \equiv 1/k \) gives a feasible solution to the minLP, so \(\tau_k^*(G) \leq (kn) \cdot (1/k) = n \).

LB: \(\tau_k^*(G) \geq n \). Base Case: \(k = 2 \).

Let \(G = (V_1, V_2; E) \). If either \(V_1 \) or \(V_2 \) fails to have a “slack vertex” in the maxLP, then

\[
\tau_k^*(G) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n.
\]
Let $G = (V, E)$. If either V_1 or V_2 fails to have a “slack vertex” in the maxLP, then

$$\tau^*_k(G) \geq \sum_{T} w(T) = \sum_{T \ni v} \sum_{T \ni v} w(T) = \sum_{v \in V} 1 = n.$$

If $v_1 \in V_1$ and $v_2 \in V_2$ are slack, then we may assume $x(v_1) = x(v_2) = 0$ (Complementary Slackness).
Linear programming

\[\tau^*_k(G) = \begin{cases}
\max & \sum w(T) \\
\text{s.t.} & \sum_{T \ni v} w(T) \leq 1, \forall v, \\
& \sum_{T \ni v} w(T) \geq 0, \forall T.
\end{cases} \]

\[\begin{cases}
\min & \sum x(v) \\
\text{s.t.} & \sum_{v \in T} x(v) \geq 1, \forall T, \\
& x(v) \geq 0, \forall v.
\end{cases} \]

LB: \(\tau^*_k(G) \geq n \). Base Case: \(k = 2 \).

Let \(G = (V_1, V_2; E) \). If either \(V_1 \) or \(V_2 \) fails to have a “slack vertex” in the maxLP, then

\[\tau^*_k(G) \geq \sum_{T} w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n. \]

If \(v_1 \in V_1 \) and \(v_2 \in V_2 \) are slack, then we may assume \(x(v_1) = x(v_2) = 0 \) (Complementary Slackness).

Each vertex in \(N(v_1), N(v_2) \) has weight 1. Since \(|N(v_1)|, |N(v_2)| \geq n/2 \), \(\tau^*_k(G) \geq n \).
Linear programming

\[\tau_k^*(G) = \begin{cases} \max & \sum w(T) \\ s.t. & \sum_{T \ni v} w(T) \leq 1, \quad \forall v, \\ w(T) \geq 0, \quad \forall T. \end{cases} = \begin{cases} \min & \sum x(v) \\ s.t. & \sum_{v \in T} x(v) \geq 1, \quad \forall T, \\ x(v) \geq 0, \quad \forall v. \end{cases} \]

LB: \(\tau_k^*(G) \geq n. \) Induction Step

Let \(G = (V_1, \ldots, V_k; E) \). If any \(V_i \) has no slack vertices in the maxLP, then

\[\tau_k^*(G) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n. \]
\[\tau^*_k(G) = \begin{cases} \text{max} & \sum w(T) \\ \text{s.t.} & \sum_{T \ni v} w(T) \leq 1, \quad \forall v, \\ w(T) \geq 0, \quad \forall T. \end{cases} \]

\[= \begin{cases} \text{min} & \sum x(v) \\ \text{s.t.} & \sum_{v \in T} x(v) \geq 1, \quad \forall T, \\ x(v) \geq 0, \quad \forall v. \end{cases} \]

LB: \(\tau^*_k(G) \geq n. \) Induction Step

Let \(G = (V_1, \ldots, V_k; E) \). If any \(V_i \) has no slack vertices in the maxLP, then

\[\tau^*_k(G) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n. \]

If \(v_i \in V_i, \forall i, \) are slack, then we may assume \(x(v_i) = 0, \forall i. \)
Linear programming

$$\tau_k^*(G) = \begin{cases} \max & \sum w(T) \\ \text{s.t.} & \sum_{T \ni v} w(T) \leq 1, \quad \forall v, \\
& w(T) \geq 0, \quad \forall T. \end{cases} = \begin{cases} \min & \sum x(v) \\ \text{s.t.} & \sum_{v \in T} x(v) \geq 1, \quad \forall T, \\
& x(v) \geq 0, \quad \forall v. \end{cases}$$

LB: $\tau_k^*(G) \geq n$. Induction Step
Let $G = (V_1, \ldots, V_k; E)$. If any V_i has no slack vertices in the maxLP, then

$$\tau_k^*(G) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n.$$

If $v_i \in V_i, \forall i$, are slack, then we may assume $x(v_i) = 0, \forall i$.

Let $G_i \leq G[N(v_i)], \forall i$, so that G_i has exactly $\frac{k-1}{k}n$ vertices in each V_j.

Martin (Iowa State University University of Birmingham London School of Economics)
An asymptotic multipartite Kühn-Osthus theorem 08 August 2017 11 / 13
Linear programming

LB: $\tau^*_k(G) \geq n$. Induction Step

Let $G = (V_1, \ldots, V_k; E)$. If any V_i has no slack vertices in the maxLP, then

$$
\tau^*_k(G) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n.
$$

If $v_i \in V_i$, $\forall i$, are slack, then we may assume $x(v_i) = 0$, $\forall i$.

Let $G_i \leq G[N(v_i)]$, $\forall i$, so that G_i has exactly $\frac{k-1}{k} n$ vertices in each V_j.

Each G_i satisfies the degree requirement for $G_{k-1}(\frac{k-1}{k} n)$.

Martin (Iowa State University University of Birmingham London School of Economics)

An asymptotic multipartite K"uhn-Osthus theorem

08 August 2017 11 / 13
Linear programming

LB: $\tau^*_k(G) \geq n$. Induction Step

Let $G = (V_1, \ldots, V_k; E)$. If any V_i has no slack vertices in the maxLP, then

$$\tau^*_k(G) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n.$$

If $v_i \in V_i$, $\forall i$, are slack, then we may assume $x(v_i) = 0$, $\forall i$.

Let $G_i \leq G[N(v_i)]$, $\forall i$, so that G_i has exactly $\frac{k-1}{k}n$ vertices in each V_j.

Each G_i satisfies the degree requirement for $G_{k-1} \left(\frac{k-1}{k}n \right)$.

By induction,

$$(k - 1)\tau^*_k(G) \geq \sum_{i=1}^{k} \sum_{v \in V(G_i)} x(v) \geq \sum_{i=1}^{k} \frac{k - 1}{k}n = (k - 1)n.$$
Linear programming

LB: \(\tau_k^*(G) \geq n. \) Induction Step

Let \(G = (V_1, \ldots, V_k; E) \). If any \(V_i \) has no slack vertices in the maxLP, then

\[
\tau_k^*(G) \geq \sum_T w(T) = \sum_{v \in V_i} \sum_{T \ni v} w(T) = \sum_{v \in V_i} 1 = n.
\]

If \(v_i \in V_i, \forall i \), are slack, then we may assume \(x(v_i) = 0, \forall i \).

Let \(G_i \leq G[N(v_i)], \forall i \), so that \(G_i \) has exactly \(\frac{k-1}{k}n \) vertices in each \(V_j \).

Each \(G_i \) satisfies the degree requirement for \(\mathcal{G}_{k-1}\left(\frac{k-1}{k}n\right) \).

By induction,

\[
(k - 1)\tau_k^*(G) \geq \sum_{i=1}^{k} \sum_{v \in V(G_i)} x(v) \geq \sum_{i=1}^{k} \frac{k-1}{k}n = (k - 1)n.
\]

□
Future work

Can we replace \(\hat{\delta}_k(G) \geq (1 - \frac{1}{\chi^*(G)}) n + \epsilon n \) with \(\hat{\delta}_k(G) \geq (1 - \frac{1}{\chi^*(G)}) n + C(H) \)?
Future work

- Can we replace $\hat{\delta}_k(G) \geq \left(1 - \frac{1}{\chi^*(G)}\right) n + \epsilon n$ with $\hat{\delta}_k(G) \geq \left(1 - \frac{1}{\chi^*(G)}\right) n + C(H)$?

- Is $\hat{\delta}_k(G) \geq (k - 1)n/k + \epsilon n$ sufficient to force the k^{th} power of a Hamilton cycle? (Related to Bollobás-Komlós conjecture on bandwidth)
Can we replace $\hat{\delta}_k(G) \geq \left(1 - \frac{1}{\chi^*(G)}\right) n + \epsilon n$ with $\hat{\delta}_k(G) \geq \left(1 - \frac{1}{\chi^*(G)}\right) n + C(H)$?

Is $\hat{\delta}_k(G) \geq (k - 1)n/k + \epsilon n$ sufficient to force the k^{th} power of a Hamilton cycle? (Related to Bollobás-Komlós conjecture on bandwidth)

What probability p guarantees that, for any G with $\hat{\delta}_k(G) \geq (k - 1)pn/k + \epsilon pn$, the random subgraph G_p has a K_k-tiling?
Thanks!

My home page:

http://orion.math.iastate.edu/rymartin

My CV (with links to this and previous talks):

http://orion.math.iastate.edu/rymartin/cv/RMcv.pdf

Contact me:

rymartin@iastate.edu