Polychromatic Colorings of Complete Graphs with Respect to 1-, 2-factors and Hamiltonian Cycles

Maria Axenovich John Goldwasser Ryan Hansen
Bernard Lidický Ryan R. Martin David Offner
John Talbot Michael Young

SIAM DM
June 6, 2018
Polychromatic Coloring

Let G and H be graphs and C a set of colors. Let $\varphi : E(G) \rightarrow C$ (not necessarily properly edge-coloring).

φ is an H-polychromatic coloring of G if every subgraph of G isomorphic to H contains all colors in C.

Example $H = K_3$, $G = K_4$, $C = \{\text{red}, \text{blue}\}$.
Polychromatic Coloring

Let G and H be graphs and C a set of colors.
Let $\varphi : E(G) \rightarrow C$ (not necessarily proper edge-coloring)

φ is an **H-polychromatic coloring** of G if every subgraph of G isomorphic to H contains all colors in C.

Example $H = K_3$, $G = K_4$, $C = \{\text{red, blue}\}$.
Let G and H be graphs and C a set of colors.
Let $\varphi : E(G) \rightarrow C$ (not necessarily proper edge-coloring)

φ is an H-polychromatic coloring of G if every subgraph of G

isomorphic to H contains all colors in C.

Example $H = K_3$, $G = K_4$, $C = \{red, blue\}$.
H-polychromatic Number

ϕ is a H-polychromatic coloring of G with respect to H if every subgraph of G isomorphic to H contains all colors in C.

Easier to find ϕ with fewer colors.
H-polychromatic Number

φ is a H-polychromatic coloring of G with respect to H if every subgraph of G isomorphic to H contains all colors in C.

Easier to find φ with fewer colors.
\(H \)-polychromatic Number

\(\varphi \) is a \(H \)-polychromatic coloring of \(G \) with respect to \(H \) if every subgraph of \(G \) isomorphic to \(H \) contains all colors in \(C \).

Easier to find \(\varphi \) with fewer colors.

\(H \)-polychromatic number of \(G \) is the maximum number of colors \(k \) such that there exists a polychromatic coloring of \(G \) with respect to \(H \) using \(k \) colors. Notation \(\text{poly}_H(G) = k \)

Example

\(\text{poly}_{K_3}(K_4) = 3 \)
Motivation for \textbf{H}-polychromatic Number

Let Q_d be a d-dimensional hypercube.

\textbf{Problem}

What is the largest $X \subseteq E(Q_n)$ such that $Q_n[X]$ is Q_d-free? $\text{ex}(Q_n, Q_d)$?

Example for Q_2 in Q_3.
Motivation for H-polychromatic Number

Let Q_d be a d-dimensional hypercube.

Problem

What is the largest $X \subseteq E(Q_n)$ such that $Q_n[X]$ is Q_d-free? $ex(Q_n, Q_d)$?

Example for Q_2 in Q_3.

![Diagram](image_url)
Motivation for H-polychromatic Number

Let Q_d be a d-dimensional hypercube.

Problem

What is the largest $X \subseteq E(Q_n)$ such that $Q_n[X]$ is Q_d-free? $\text{ex}(Q_n, Q_d)$?

Example for Q_2 in Q_3.

Any color class of any Q_d-polychromatic coloring of Q_n gives a lower bound on $|X|$.

$$e(Q_n)(1 - 1/poly_{Q_d}(Q_n)) \leq \text{ex}(Q_n, Q_d)$$
Motivation for H-polychromatic Number

Let Q_d be a d-dimensional hypercube.

Problem

What is the largest $X \subseteq E(Q_n)$ such that $Q_n[X]$ is Q_d-free? $\text{ex}(Q_n, Q_d)$?

Example for Q_2 in Q_3.

Any color class of any Q_d-polychromatic coloring of Q_n gives a lower bound on $|X|$.

$$e(Q_n)(1 - 1/\text{poly}_{Q_d}(Q_n)) \leq \text{ex}(Q_n, Q_d)$$
Known Results

Theorem (Alon, Krech, Szabó 2007)

\[
\binom{d+1}{2} \geq \text{poly}_{Q_d}(Q_n) \geq \begin{cases}
\frac{(d+1)^2}{4} & \text{if } d \text{ is odd} \\
\frac{d(d+2)}{4} & \text{if } d \text{ is even}
\end{cases}
\]

Theorem (Offner 2008)

\[
\text{poly}_{Q_d}(Q_n) = \begin{cases}
\frac{(d+1)^2}{4} & \text{if } d \text{ is odd} \\
\frac{d(d+2)}{4} & \text{if } d \text{ is even}
\end{cases}
\]
Edge coloring of H is *rainbow* if no two edges of H receive the same color.

Edge coloring of G is *H-anti-ramsey* if no copy of H in G is rainbow.

$ar(G, H)$ is the largest number of colors used in an H-anti-Ramsey coloring of G.

\[
ar(G, H) \leq \text{ex}(G, H)\]

\[
ar(G, H) \geq \left(1 - \frac{2}{\text{poly}_H(G)}\right) e(G)\]
Polychromatic Coloring of Integers

Let $S \subset \mathbb{Z}$ be finite.

Coloring of \mathbb{Z} is S-polychromatic if every translation of S contains all colors.

Example: $S = \{0, 1, 4, 5\}$

All about this during the next talk in this session by John Goldwasser.
Let $S \subset \mathbb{Z}$ be finite.
Coloring of \mathbb{Z} is S-polychromatic if every translation of S contains all colors.

Example: $S = \{0, 1, 4, 5\}$

All about this during the next talk in this session by John Goldwasser.
Let $S \subset \mathbb{Z}$ be finite. Coloring of \mathbb{Z} is S-polychromatic if every translation of S contains all colors.

Example: $S = \{0, 1, 4, 5\}$

All about this during the next talk in this session by John Goldwasser.
Let $S \subset \mathbb{Z}$ be finite. Coloring of \mathbb{Z} is S-polychromatic if every translation of S contains all colors.

Example: $S = \{0, 1, 4, 5\}$

All about this during the next talk in this session by John Goldwasser.
Polychromatic Coloring of Integers

Let $S \subset \mathbb{Z}$ be finite. Coloring of \mathbb{Z} is S-polychromatic if every translation of S contains all colors.

Example: $S = \{0, 1, 4, 5\}$

All about this during the next talk in this session by John Goldwasser.
Let $S \subset \mathbb{Z}$ be finite. Coloring of \mathbb{Z} is S-polychromatic if every translation of S contains all colors.

Example: $S = \{0, 1, 4, 5\}$

All about this during the next talk in this session by John Goldwasser.
Polychromatic Coloring of Integers

Let $S \subset \mathbb{Z}$ be finite. Coloring of \mathbb{Z} is S-polychromatic if every translation of S contains all colors.

Example: $S = \{0, 1, 4, 5\}$

All about this during the next talk in this session by John Goldwasser.
Our Results for This Talk

Let F_k be a k-factor and HC be a Hamiltonian Cycle.

Theorem (AGHLMOTY ’18)
If n is an even positive integer, then $\text{poly}_{F_1}(K_n) = \lfloor \log_2 n \rfloor$.

Theorem (AGHLMOTY ’18)
There exists a constant c such that

$$
\lfloor \log_2 2(n + 1) \rfloor \leq \text{poly}_{F_2}(K_n) \leq \text{poly}_{HC}(K_n) \leq \log_2 n + c.
$$

Exact solution for $\text{poly}_{F_2}(K_n)$ and $\text{poly}_{HC}(K_n)$ by G&H.
Constructions For Lower Bounds

\[\lfloor \log_2 n \rfloor \leq \text{poly}_{F_1}(K_n) \]

\[\lfloor \log_2 2(n + 1) \rfloor \leq \text{poly}_{F_2}(K_n) \]
Constructions For Lower Bounds

\[\lfloor \log_2 n \rfloor \leq \operatorname{poly}_{F_1}(K_n) \]

\[\lfloor \log_2 2(n + 1) \rfloor \leq \operatorname{poly}_{F_2}(K_n) \]
Constructions For Lower Bounds

\[\lceil \log_2 n \rceil \leq \operatorname{poly}_{F_1}(K_n) \]

\[\lceil \log_2 2(n + 1) \rceil \leq \operatorname{poly}_{F_2}(K_n) \]
Constructions For Lower Bounds

$\lfloor \log_2 n \rfloor \leq \text{poly}_{F_1}(K_n)$

$\lfloor \log_2 2(n + 1) \rfloor \leq \text{poly}_{F_2}(K_n)$
Constructions For Lower Bounds

$\lceil \log_2 n \rceil \leq \text{poly}_{F_1}(K_n)$

$\lceil \log_2 2(n + 1) \rceil \leq \text{poly}_{F_2}(K_n)$
Constructions For Lower Bounds

\[\lfloor \log_2 n \rfloor \leq \poly_{F_1}(K_n) \]

\[\lfloor \log_2 2(n + 1) \rfloor \leq \poly_{F_2}(K_n) \]
Constructions For Lower Bounds

$$\lfloor \log_2 n \rfloor \leq \text{poly}_{F_1}(K_n)$$

$$\lfloor \log_2 2(n + 1) \rfloor \leq \text{poly}_{F_2}(K_n)$$
CONSTRUCTIONS FOR LOWER BOUNDS

\[\lceil \log_2 n \rceil \leq \text{poly}_{F_1}(K_n) \]

\[\lceil \log_2 2(n + 1) \rceil \leq \text{poly}_{F_2}(K_n) \]
Constructions For Lower Bounds

\[\lceil \log_2 n \rceil \leq \text{poly}_{F_1}(K_n) \]

\[\lceil \log_2 2(n + 1) \rceil \leq \text{poly}_{F_2}(K_n) \]
Constructions For Lower Bounds

\[\lfloor \log_2 n \rfloor \leq \text{poly}_{F_1}(K_n) \]

\[\lfloor \log_2 2(n + 1) \rfloor \leq \text{poly}_{F_2}(K_n) \]
Constructions For Lower Bounds

\[
\lfloor \log_2 n \rfloor \leq \text{poly}_{F_1}(K_n)
\]

\[
\lfloor \log_2 2(n + 1) \rfloor \leq \text{poly}_{F_2}(K_n)
\]
Constructions For Lower Bounds

\[\lfloor \log_2 n \rfloor \leq \text{poly}_{F_1}(K_n) \]

\[\lfloor \log_2 2(n + 1) \rfloor \leq \text{poly}_{F_2}(K_n) \]
CONSTRUCTIONS FOR LOWER BOUNDS

\[\lfloor \log_2 n \rfloor \leq \text{poly}_{F_1}(K_n) \]

\[\lfloor \log_2 2(n + 1) \rfloor \leq \text{poly}_{F_2}(K_n) \]
Constructions For Lower Bounds

$$\lfloor \log_2 n \rfloor \leq \text{poly}_{F_1}(K_n)$$

$$\lfloor \log_2 2(n + 1) \rfloor \leq \text{poly}_{F_2}(K_n)$$
CONSTRUCTIONS FOR LOWER BOUNDS

\[\lfloor \log_2 n \rfloor \leq \text{poly}_{F_1}(K_n) \]

\[\lfloor \log_2 2(n + 1) \rfloor \leq \text{poly}_{F_2}(K_n) \]
Upper bound for $\text{poly}_F(K_n)$

- show there is an optimal coloring that has ordering of vertices such that for each fixed vertex v “all edges going to the right have the same color”.

- for ever vertex define *inherited color*, counting argument using majority.
Upper bound for $\text{poly}_{F_1}(K_n)$

- show there is an optimal coloring that has ordering of vertices such that for each fixed vertex v “all edges going to the right have the same color”.

- for every vertex define *inherited color*, counting argument using majority.
Counting first for poly$_{F_1}(K_n)$

for vertex define *inherited color*
Counting first for \(\text{poly}_{F_1}(K_n) \)

for vertex define *inherited color*

Let \(M_c \) be vertices colored color \(c \in \{1, 2, \ldots\} \).

Feature: \(\forall c \) exists \(i_c \in [n] \) such that \(|M_c \cap \{v_1, \ldots, v_i\}| > i/2 \).
for vertex define *inherited color*

Let M_c be vertices colored color $c \in \{1, 2, \ldots\}$.

Feature: $\forall c \exists i_c \in [n]$ such that $|M_c \cap \{v_1, \ldots, v_i\}| > i/2$.
Counting first for $\text{poly}_{F_1}(K_n)$

for vertex define \textit{inherited color}

Let M_c be vertices colored color $c \in \{1, 2, \ldots\}$.

Feature: $\forall c$ exists $i_c \in [n]$ such that $|M_c \cap \{v_1, \ldots, v_i\}| > i/2$.

\[
\sum c |M_c| \leq n = \Rightarrow c \leq \lfloor \log_2 n \rfloor
\]
Counting first for $\text{poly}_{F_1}(K_n)$

For vertex define *inherited color*

Let M_c be vertices colored color $c \in \{1, 2, \ldots \}$.

Feature: $\forall c$ exists $i_c \in [n]$ such that $|M_c \cap \{v_1, \ldots, v_i\}| > i/2$.

Assume that $i_1 < i_2 < \ldots$. By induction $|M_c| \geq 2^c - 1$.

$$\sum_c |M_c| \leq n \implies c \leq \lfloor \log_2 n \rfloor$$
Ordering the vertices

Take largest ordered initial segment,
Ordering the vertices

Take largest ordered initial segment, v has maximum monochromatic degree (red) in the rest,
Ordering the vertices

Take largest ordered initial segment, v has maximum monochromatic degree (red) in the rest, exists not red uv,
Take largest ordered initial segment, \(v \) has maximum monochromatic degree (red) in the rest, exists not red \(uv, y_iw_i \) cannot be blue,
Ordering the vertices

Take largest ordered initial segment, \(v \) has maximum monochromatic degree (red) in the rest, exists not red \(uv, y_iw_i \) cannot be blue, all \(uw_i \) are blue and \(w_i \) is not in the ordered segment,
Ordering the vertices

Take largest ordered initial segment, v has maximum monochromatic degree (red) in the rest, exists not red uv, y_iw_i cannot be blue, all uw_i are blue and w_i is not in the ordered segment,
Take largest ordered initial segment, \(v \) has maximum monochromatic degree (red) in the rest, exists not red \(uv \), \(y_iw_i \) cannot be blue, all \(uw_i \) are blue and \(w_i \) is not in the ordered segment,
Ordering the vertices

Take largest ordered initial segment, \(v \) has maximum monochromatic degree (red) in the rest, exists not red \(uv, y_iw_i \) cannot be blue, all \(uw_i \) are blue and \(w_i \) is not in the ordered segment,
ORDERING THE VERTICES

Take largest ordered initial segment, \(v \) has maximum monochromatic degree (red) in the rest, exists not red \(uv, y_iw_i \) cannot be blue, all \(uw_i \) are blue and \(w_i \) is not in the ordered segment,
Ordering the vertices $v, u, y_1, y_2, y_3 = w_4, y_4 = w_3, \ldots, y_d, w_1, w_2, \ldots, w_d$

Take largest ordered initial segment, v has maximum monochromatic degree (red) in the rest, exists not red uv, y_iw_i cannot be blue, all uw_i are blue and w_i is not in the ordered segment,
Ordering the vertices

Take largest ordered initial segment, v has maximum monochromatic degree (red) in the rest, exists not red uv, y_iw_i cannot be blue, all uw_i are blue and w_i is not in the ordered segment, u has higher mono degree than v.

□
Take largest ordered initial segment, v has maximum monochromatic degree \textbf{(red)} in the rest, exists not red uv, y_iw_i cannot be blue, all uw_i are blue and w_i is not in the ordered segment, u has higher mono degree than v.

\[y_1, y_2, \ldots, y_d \]

\[w_1, w_2, \ldots, w_d \]
Thank you