Independent sets near the lower bound in bounded degree graphs

Zdeněk Dvořák Bernard Lidický

Charles University

Iowa State University

AMS Sectional Meeting #1123
Minneapolis, MN
Oct 29, 2016
Definition

An *independent set* in a graph G is an induced subgraph with no edges.

$\alpha(G)$ is the size of a maximum independent set in G.
$\omega(G)$ is the size of a maximum clique in G.
Trivial lower bound

\(\Delta(G) \) is the maximum degree of \(G \).
\(n \) is the number of vertices of \(G \).

If \(\Delta(G) \leq \Delta \), then \(\alpha(G) \geq \frac{n}{\Delta + 1} \).
Trivial lower bound

$\Delta(G)$ is the maximum degree of G.

n is the number of vertices of G.

If $\Delta(G) \leq \Delta$, then $\alpha(G) \geq \frac{n}{\Delta+1}$.
(tight)

What is $\omega(G) \leq \Delta$?
Theorem (Brooks 1941)

If $\Delta(G) \geq 3$ and $\max(\Delta(G), \omega(G)) \leq \Delta$ then G is Δ-colorable.

Implies $\alpha(G) \geq \frac{n}{\Delta}$.

Tight.
Theorem (Albertson, Bollobás, Tucker 1976)

If \(G \) is connected, \(\Delta(G) \leq \Delta \) and \(\omega(G) \leq \Delta - 1 \), then \(\alpha(G) > \frac{n}{\Delta} \) unless \(G \) is one of the following two exceptions:
Related results

Theorem (Albertson, Bollobás, Tucker 1976)

If G is connected, $\Delta(G) \leq \Delta$ and $\omega(G) \leq \Delta - 1$, then $\alpha(G) > \frac{n}{\Delta}$ unless G is one of the following two exceptions:

![Graph 1](image1.png)

![Graph 2](image2.png)

Theorem (King, Lu, Peng 2012)

If G is connected, $\Delta(G) \leq \Delta$ and $\omega(G) \leq \Delta - 1$, then $\alpha(G) > \frac{n}{\Delta - \frac{2}{67}}$ unless G is one of the two exceptions above.
Small Surplus \(k \)

If \(G \) with \(\max(\Delta(G), \omega(G)) \leq \Delta \) is

\[
\text{then } \alpha(G) \leq \frac{n-k}{\Delta} + k.
\]
Small surplus k

If G with $\max(\Delta(G), \omega(G)) \leq \Delta$ is

then $\alpha(G) \leq \frac{n-k}{\Delta} + k$.

Problem

If $\alpha(G) \leq \frac{n}{\Delta} + k$ and $\max(\Delta(G), \omega(G)) \leq \Delta$, does G look like

Are there other candidates for K_Δ?
\(\Delta\)-TIGHT GRAPHS

A graph is \(\Delta\)-tight if it is \(K_\Delta\) or one of

If \(G\) is \(\Delta\)-tight, then \(\alpha(G) = \frac{n}{\Delta}\).
Our result

Theorem (Dvořák, L.)

Let $\Delta \geq 3$ and $k \geq 0$.
Let G be an n-vertex graph with $\max(\Delta(G), \omega(G)) \leq \Delta$.
If $\alpha(G) < \frac{n}{\Delta} + k$, then there exists $X \subseteq V(G)$ of size $< 34\Delta^2 k$ such that $G - X$ is Δ-tightly partitioned.
We will try a sketch for $\Delta = 5$.
Δ-FREE VERTICES

Definition
A vertex v of G is $Δ$-free if v is not in $Δ$-tight subgraph.
Many Δ-free vertices \Rightarrow large α

Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$.
Many Δ-free vertices \Rightarrow large α

Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$.

By induction (now only for $\Delta \geq 5$).
Many Δ-free vertices \Rightarrow large α

Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$.

By induction (now only for $\Delta \geq 5$).

- G contains $C_5 \boxtimes P_2$ (hence $\Delta = 5$)

Let $H = G - C_5 \boxtimes P_2$

$\alpha(G) = \alpha(C_5 \boxtimes P_2) + \alpha(H) = 2 + \frac{n-10}{\Delta} + \frac{1}{34\Delta^2} m = \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$
Many Δ-free vertices \Rightarrow large α

Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$.

By induction (now only for $\Delta \geq 5$).

- $\omega(G) \leq \Delta - 1$ then $\alpha(G) \geq \frac{n}{\Delta} + \frac{n}{34\Delta^2}$ by King, Lu, Peng.
Many Δ-free vertices \Rightarrow large α

Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$.

By induction (now only for $\Delta \geq 5$).

- G contains K_Δ.
Many Δ-free vertices \Rightarrow large α

Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$.

By induction (now only for $\Delta \geq 5$).

- G contains K_Δ.

![Diagram of a complete graph](image)
Many \(\Delta \)-free vertices \(\Rightarrow \) large \(\alpha \)

Lemma

If \(\max(\Delta(G), \omega(G)) \leq \Delta \) and \(G \) has at least \(m \) vertices that are \(\Delta \)-free then \(\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m \).

By induction (now only for \(\Delta \geq 5 \)).

- \(G \) contains \(K_\Delta \).

\[
\alpha(G) = \alpha(K_\Delta) + \alpha(G - K_\Delta) \geq 1 + \frac{n - \Delta}{\Delta} + \frac{1}{34\Delta^2} m
\]

\[
= \frac{n}{\Delta} + \frac{1}{34\Delta^2} m
\]
Many Δ-free vertices \Rightarrow large α

Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$.

By induction (now only for $\Delta \geq 5$).

- G contains K_Δ.

\[\alpha(G) = \alpha(K_\Delta) + \alpha(G - K_\Delta) \geq 1 + \frac{n - \Delta}{\Delta} + \frac{1}{34\Delta^2} m \]

\[= \frac{n}{\Delta} + \frac{1}{34\Delta^2} m \]
Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$.

By induction (now only for $\Delta \geq 5$).

- G contains K_{Δ}.

$$\alpha(G) = \alpha(K_{\Delta}) + \alpha(G - K_{\Delta}) \geq 1 + \frac{n - \Delta}{\Delta} + \frac{1}{34\Delta^2} m$$

$$= \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$$
Many Δ-free vertices ⇒ large α

Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$.

By induction (now only for $\Delta \geq 5$).

- G contains K_Δ.

\[
\alpha(G) = \alpha(K_\Delta) + \alpha(G - K_\Delta) \geq 1 + \frac{n - \Delta}{\Delta} + \frac{1}{34\Delta^2} m
\]

\[
= \frac{n}{\Delta} + \frac{1}{34\Delta^2} m
\]
Many Δ-free vertices \Rightarrow large α

Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$.

By induction (now only for $\Delta \geq 5$).

- G contains K_Δ.

\[
\alpha(G) = \alpha(K_\Delta) + \alpha(G - K_\Delta) \geq 1 + \frac{n - \Delta}{\Delta} + \frac{1}{34\Delta^2} m
\]

\[
= \frac{n}{\Delta} + \frac{1}{34\Delta^2} m
\]
Many Δ-free vertices \Rightarrow large α

Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$.

By induction (now only for $\Delta \geq 5$).

- G contains K_Δ.

\[
\alpha(G) = \alpha(K_\Delta) + \alpha(G - K_\Delta) \geq 1 + \frac{n - \Delta}{\Delta} + \frac{1}{34\Delta^2} (m - \Delta)
\]

\[
= \frac{n}{\Delta} + \frac{1}{34\Delta^2} (m - \Delta)
\]
Many Δ-free vertices \Rightarrow large α

Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$.

By induction (now only for $\Delta \geq 5$).
- G contains K_Δ.

No blue triangles.
Many Δ-free vertices \Rightarrow large α

Lemma

If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ-free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m$.

By induction (now only for $\Delta \geq 5$).

- G contains K_Δ.
Many \(\Delta \)-free vertices \(\Rightarrow \) large \(\alpha \)

Lemma

If \(\max(\Delta(G), \omega(G)) \leq \Delta \) and \(G \) has at least \(m \) vertices that are \(\Delta \)-free then \(\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2} m \).

By induction (now only for \(\Delta \geq 5 \)).

- \(G \) contains \(K_\Delta \).

Contradiction with \(\Delta(G) \leq \Delta \).
Lemma

An n-vertex graph G with $\max(\Delta(G), \omega(G)) \leq \Delta$ can be partitioned into sets A, B, C, and D in time $O(\Delta^2 n)$, such that

- $G[A]$ is Δ-tightly partitioned,
- $G[B]$ is K_Δ-partitioned and $|B| \leq 3\Delta(|C| + |D|)$,
- C is Δ-profitably nibbled,
- D is Δ-free in $G - C$, and
- $\alpha(G) = \alpha(G[B \cup C \cup D]) + |A|/\Delta$.

\[\text{\includegraphics[width=\textwidth]{partition_lemma_diagram.png}}\]
Counting lemma

Lemma

If $\alpha(G) < \Delta/n + k$, then $|C| + |D| < 34\Delta^2k$.
Theorem (Dvořák, L.)

If $\alpha(G) < \frac{n}{\Delta} + k$, then exists $X \subseteq V(G)$ of size $< 34\Delta^2k$ such that $G - X$ is Δ-tightly partitioned.

Previous Lemma:

If $\alpha(G) < \frac{n}{\Delta} + k$, then $|C| + |D| < 34\Delta^2k$.

Put $X = C \cup D$.
Computational Consequences

Computing \(\alpha(G) \) is NP-complete.

If \(\alpha(G) < n/\Delta + k \), can you compute \(\alpha(G) \) efficiently?
Computational Consequences

Computing $\alpha(G)$ is NP-complete.

If $\alpha(G) < n/\Delta + k$, can you compute $\alpha(G)$ efficiently?

YES!
Computational Consequences

Computing $\alpha(G)$ is NP-complete.

If $\alpha(G) < n/\Delta + k$, can you compute $\alpha(G)$ efficiently?

YES!

• Find partition with $|B \cup C \cup D| < 114\Delta^3k$ in time $O(\Delta^2 n)$.

\[\begin{align*}
A & \quad B & \quad C & \quad D
\end{align*} \]
Computational Consequences

Computing $\alpha(G)$ is NP-complete.

If $\alpha(G) < n/\Delta + k$, can you compute $\alpha(G)$ efficiently?

YES!

- Find partition with $|B \cup C \cup D| < 114\Delta^3k$ in time $O(\Delta^2 n)$.

- Compute $\alpha(B \cup C \cup D)$ in time $2^O(\Delta^3 k)$.
Computing $\alpha(G)$ is NP-complete.

If $\alpha(G) < n/\Delta + k$, can you compute $\alpha(G)$ efficiently?

YES!

- Find partition with $|B \cup C \cup D| < 114\Delta^3 k$ in time $O(\Delta^2 n)$.

- Compute $\alpha(B \cup C \cup D)$ in time $2^{O(\Delta^3 k)}$.

- Result is $\alpha(B \cup C \cup D) + \frac{|A|}{\Delta}$.
Computational Consequences

Computing $\alpha(G)$ is NP-complete.

If $\alpha(G) < n/\Delta + k$, can you compute $\alpha(G)$ efficiently?

YES!

- Find partition with $|B \cup C \cup D| < 114\Delta^3k$ in time $O(\Delta^2 n)$.

- Compute $\alpha(B \cup C \cup D)$ in time $2^{O(\Delta^3 k)}$.

- Result is $\alpha(B \cup C \cup D) + \frac{|A|}{\Delta}$.

- Total time is $2^{O(\Delta^3 k)} + O(\Delta^2 n)$. Efficient if Δ and k fixed.
Thank you for your attention!