Upper bounds on small Ramsey numbers

Bernard Lidický Florian Pfender

Iowa State University
University of Colorado Denver

Atlanta Lecture Series in Combinatorics and Graph Theory XIV
Feb 15, 2015
Definition

\(R(G_1, G_2, \ldots, G_k) \) is the smallest integer \(n \) such that any \(k \)-edge coloring of \(K_n \) contains a copy of \(G_i \) in color \(i \) for some \(1 \leq i \leq k \).

\[
R(K_3, K_3) > 5 \\
R(K_3, K_3) \leq 6
\]
Definition

$R(G_1, G_2, \ldots, G_k)$ is the smallest integer n such that any k-edge coloring of K_n contains a copy of G_i in color i for some $1 \leq i \leq k$.

\[R(K_3, K_3) > 5 \quad R(K_3, K_3) \leq 6 \]
Definition

\(R(G_1, G_2, \ldots, G_k) \) is the smallest integer \(n \) such that any \(k \)-edge coloring of \(K_n \) contains a copy of \(G_i \) in color \(i \) for some \(1 \leq i \leq k \).

\[
R(K_3, K_3) > 5 \\
R(K_3, K_3) \leq 6
\]
Definition

\(R(G_1, G_2, \ldots, G_k) \) is the smallest integer \(n \) such that any \(k \)-edge coloring of \(K_n \) contains a copy of \(G_i \) in color \(i \) for some \(1 \leq i \leq k \).

\[
R(K_3, K_3) > 5
\]

\[
R(K_3, K_3) \leq 6
\]
Definition

\(R(G_1, G_2, \ldots, G_k) \) is the smallest integer \(n \) such that any \(k \)-edge coloring of \(K_n \) contains a copy of \(G_i \) in color \(i \) for some \(1 \leq i \leq k \).

\[
R(K_3, K_3) > 5 \\
R(K_3, K_3) \leq 6
\]
Definition

\(R(G_1, G_2, \ldots, G_k) \) is the smallest integer \(n \) such that any \(k \)-edge coloring of \(K_n \) contains a copy of \(G_i \) in color \(i \) for some \(1 \leq i \leq k \).

\[
R(K_3, K_3) > 5 \\
R(K_3, K_3) \leq 6
\]
Theorem (Ramsey 1930)

$R(K_m, K_n)$ is finite.
Theorem (Ramsey 1930)

\[R(K_m, K_n) \text{ is finite.} \]

\[R(G_1, \ldots, G_k) \text{ is finite} \]

Questions:
- study how \(R(G_1, \ldots, G_k) \) grows if \(G_1, \ldots, G_k \) grow (large)
- study \(R(G_1, \ldots, G_k) \) for fixed \(G_1, \ldots, G_k \) (small)
Theorem (Ramsey 1930)

\[R(K_m, K_n) \text{ is finite.} \]

\[R(G_1, \ldots, G_k) \text{ is finite} \]

Questions:

- study how \(R(G_1, \ldots, G_k) \) grows if \(G_1, \ldots, G_k \) grow (large)
- study \(R(G_1, \ldots, G_k) \) for fixed \(G_1, \ldots, G_k \) (small)
Seminal paper:
David P. Robbins Prize by AMS for Razborov in 2013
Flag algebras

Seminal paper:
David P. Robbins Prize by AMS for Razborov in 2013

Example (Goodman, Razborov)
If density of edges is at least $\rho > 0$, what is the minimum density of triangles?

- designed to attack extremal problems.
- works well if constraints as well as desired value can be computed by checking small subgraphs (or average over small subgraphs)
- the results are in limit (very large graphs)
Applications (Incomplete List)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Application/Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Razborov</td>
<td>2008</td>
<td>edge density vs. triangle density</td>
</tr>
<tr>
<td>Hladký, Král, Norin</td>
<td>2009</td>
<td>Bounds for the Caccetta-Haggvist conjecture</td>
</tr>
<tr>
<td>Razborov</td>
<td>2010</td>
<td>On 3-hypergraphs with forbidden 4-vertex configurations</td>
</tr>
<tr>
<td>Hatami, Hladký, Král, Norin, Razborov / Grzesik</td>
<td>2011</td>
<td>Erdős Pentagon problem</td>
</tr>
<tr>
<td>Hatami, Hladký, Král, Norin, Razborov</td>
<td>2012</td>
<td>Non-Three-Colourable Common Graphs Exist</td>
</tr>
<tr>
<td>Balogh, Hu, L., Liu / Baber</td>
<td>2012</td>
<td>4-cycles in hypercubes</td>
</tr>
<tr>
<td>Reiher</td>
<td>2012</td>
<td>edge density vs. clique density</td>
</tr>
<tr>
<td>Shagnik, Huang, Ma, Naves, Sudakov</td>
<td>2013</td>
<td>minimum number of k-cliques</td>
</tr>
<tr>
<td>Baber, Talbot</td>
<td>2013</td>
<td>A Solution to the 2/3 Conjecture</td>
</tr>
<tr>
<td>Falgas-Ravry, Vaughan</td>
<td>2013</td>
<td>Turán density of many 3-graphs</td>
</tr>
<tr>
<td>Cummings, Král, Pfender, Sperfeld, Treglown, Young</td>
<td>2013</td>
<td>Monochromatic triangles in 3-edge colored graphs</td>
</tr>
<tr>
<td>Kramer, Martin, Young</td>
<td>2013</td>
<td>Boolean lattice</td>
</tr>
<tr>
<td>Balogh, Hu, L., Pikhurko, Udvari, Volec</td>
<td>2013</td>
<td>Monotone permutations</td>
</tr>
<tr>
<td>Norin, Zwols</td>
<td>2013</td>
<td>New bound on Zarankiewicz’s conjecture</td>
</tr>
<tr>
<td>Huang, Linial, Naves, Peled, Sudakov</td>
<td>2014</td>
<td>3-local profiles of graphs</td>
</tr>
<tr>
<td>Balogh, Hu, L., Pfender, Volec, Young</td>
<td>2014</td>
<td>Rainbow triangles in 3-edge colored graphs</td>
</tr>
<tr>
<td>Balogh, Hu, L., Pfender</td>
<td>2014</td>
<td>Induced density of C_5</td>
</tr>
<tr>
<td>Goaoc, Hubard, de Verclos, Séréni, Volec</td>
<td>2014</td>
<td>Order type and density of convex subsets</td>
</tr>
<tr>
<td>Coregliano, Razborov</td>
<td>2015</td>
<td>Tournaments</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Applications to graphs, oriented graphs, hypergraphs, hypercubes, permutations, crossing number of graphs, order types, geometry, ...

Razborov: Flag Algebra: an Interim Report
Inspiration

Theorem (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} \binom{n}{3} + o(n^3)$ monochromatic triangles.

\[
\begin{align*}
\begin{array}{ccc}
\end{align*}
\end{align*}
\]
Inspiration

Theorem (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} \binom{n}{3} + o(n^3)$ monochromatic triangles.

\[\geq \frac{1}{25} \]
Theorem (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least \(\frac{1}{25} \binom{n}{3} + o(n^3) \) monochromatic triangles.

\[
\begin{align*}
&\geq \frac{1}{25} \quad \text{subject to} \quad \begin{align*}
&= 0 \quad \begin{align*}
&= 0
\end{align*}
\end{align*}
\end{align*}
\]
Inspiration

Theorem (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on \(n \) vertices, there are at least \(\frac{1}{25} \binom{n}{3} + o(n^3) \) monochromatic triangles.

\[
\begin{align*}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\quad + \\
\quad + \\
\quad \geq \frac{1}{25}
\end{array}
\end{array}
\end{array}
\end{align*}
\]

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\quad \geq \frac{1}{25} \quad \text{subject to} \quad \begin{array}{c}
\quad = \\
\quad = \\
\quad = 0
\end{array}
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\quad \geq \frac{1}{25}
\end{array}
\end{array}
\end{array}
\]
Inspiration

Theorem (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} \binom{n}{3} + o(n^3)$ monochromatic triangles.

\[
\frac{1}{25} \geq 0
\]
Inspiration

Theorem (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} \binom{n}{3} + o(n^3)$ monochromatic triangles.

\[\begin{align*}
\geq \frac{1}{25}
\end{align*} \]

subject to

\[\begin{align*}
\geq \frac{1}{5}
\end{align*} \]
Example

What is number of non-edges in a blow-up?
What is number of non-edges in a blow-up?

\[
\sum_{i=1}^{5} \binom{|I_i|}{2} \geq \sum_{i=1}^{5} \binom{n/5}{2} \geq 5 \binom{n/5}{2} \approx \frac{1}{5} \binom{n}{2}
\]
What is number of non-edges in a blow-up?

\[\sum_{i=1}^{5} \binom{|I_i|}{2} \geq \sum_{i=1}^{5} \binom{n/5}{2} \geq 5 \binom{n/5}{2} \approx \frac{1}{5} \binom{n}{2} \]

Observation (Key Observation)

*If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.***
OUTLINE OF IDEA

OBSERVATION (KEY OBSERVATION)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.
Outline of Idea

Observation (Key Observation)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

- Let \mathcal{G} be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups \mathcal{B} of graphs in \mathcal{G}
- $\forall B \in \mathcal{B}$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.
Outline of idea

Observation (Key Observation)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

- Let \mathcal{G} be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups \mathcal{B} of graphs in \mathcal{G}.
- $\forall B \in \mathcal{B}$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.

Observation

If density of non-edges ρ is $> \frac{1}{k+1}$ over all $B \in \mathcal{B}$, then Ramsey graph has as most k vertices.
Outline of Idea

Observation (Key Observation)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

- Let G be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups \mathcal{B} of graphs in G.
- $\forall B \in \mathcal{B}$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.

Observation

If density of non-edges ρ is $> \frac{1}{k+1}$ over all $B \in \mathcal{B}$, then Ramsey graph has as most k vertices.

If one can prove $\rho > \frac{1}{6}$, then there is no Ramsey graphs on 6 vertices.
Outline of Idea

Observation (Key Observation)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

- Let \mathcal{G} be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups \mathcal{B} of graphs in \mathcal{G}
- $\forall B \in \mathcal{B}$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.

Observation

If density of non-edges ρ is $> \frac{1}{k+1}$ over all $B \in \mathcal{B}$, then Ramsey graph has as most k vertices.

If one can prove $\rho > \frac{1}{6}$, then there is no Ramsey graphs on 6 vertices.

Notice that any lower bound on ρ in $(\frac{1}{k+1}, \frac{1}{k}]$ gives Ramsey graph has at most k vertices.
OUTLINE OF IDEA

OBSERVATION (KEY OBSERVATION)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

- Let G be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups B of graphs in G.
- $\forall B \in B$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.

$$R(G_1, \ldots, G_n) \leq 1 + \frac{1}{\rho}$$

OBSERVATION

If density of non-edges ρ is $> \frac{1}{k+1}$ over all $B \in B$, then Ramsey graph has as most k vertices.

If one can prove $\rho > \frac{1}{6}$, then there is no Ramsey graphs on 6 vertices.

Notice that any lower bound on ρ in $\left(\frac{1}{k+1}, \frac{1}{k} \right]$ gives Ramsey graph has at most k vertices.
Blow-ups in Flag Algebra

How to characterize blow-ups B of graphs with no \triangle, \triangle?
Blow-ups in Flag Algebra

How to characterize blow-ups B of graphs with no \triangle, \triangle?

Forbidden subgraphs:

\triangle, \triangle, \triangledown, \triangledown
Blow-ups in Flag Algebra

How to characterize blow-ups \mathcal{B} of graphs with no $\begin{array}{c} \text{\includegraphics[width=0.05\textwidth]{triangle}} \\ \text{\includegraphics[width=0.05\textwidth]{triangle}} \end{array}$?

Forbidden subgraphs:

![Forbidden subgraphs](image)

minimize

subject to $\begin{array}{c} \text{\includegraphics[width=0.05\textwidth]{triangle}} = \text{\includegraphics[width=0.05\textwidth]{triangle}} = \text{\includegraphics[width=0.05\textwidth]{triangle}} = 0 \end{array}$
How to characterize blow-ups B of graphs with no \bigtriangleup, \bigtriangleup?

Forbidden subgraphs:

\[\begin{align*} I_1 & \quad I_2 & \quad I_3 & \quad I_4 & \quad I_5 \\ \begin{array}{c} \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \end{array} & \begin{array}{c} \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \end{array} \end{align*} \]

Flag Algebra question! Easy to modify.

\[\begin{align*} \text{minimize} & \quad \begin{array}{c} \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \end{array} \\ \text{subject to} & \quad \begin{array}{c} \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup \end{array} = 0 \end{align*} \]
New upper bounds (so far)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower</th>
<th>New upper</th>
<th>Old upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(K_4^-, K_4^-, K_4^-)$</td>
<td>28</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>$R(K_3, K_4^-, K_4^-)$</td>
<td>21</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>$R(K_4, K_4^-, K_4^-)$</td>
<td>33</td>
<td>47</td>
<td>59</td>
</tr>
<tr>
<td>$R(K_4, K_4, K_4^-)$</td>
<td>55</td>
<td>104</td>
<td>113</td>
</tr>
<tr>
<td>$R(C_3, C_5, C_5)$</td>
<td>17</td>
<td>18</td>
<td>21?</td>
</tr>
<tr>
<td>$R(K_4, K_7^-)$</td>
<td>37</td>
<td>52</td>
<td>59</td>
</tr>
<tr>
<td>$R(K_2,2,2, K_2,2,2)$</td>
<td>30</td>
<td>32</td>
<td>60?</td>
</tr>
<tr>
<td>$R(K_5^-, K_6^-)$</td>
<td>31</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>$R(K_5, K_6^-)$</td>
<td>43</td>
<td>62</td>
<td>67</td>
</tr>
</tbody>
</table>
Example of Computation

Lemma

\[R(K_3, K_3) \leq 6 \]
Example of Computation

Lemma

\[R(K_3, K_3) \leq 6 \]

Our goal is to show:

\[> \frac{1}{6} \text{ subject to } = = = = = = = 0 \]
Example of Computation

Lemma

\[R(K_3, K_3) \leq 6 \]

Our goal is to show:

\[\frac{1}{6} \text{ subject to } \begin{array}{c}
\begin{array}{c}
\text{ } = 0
\end{array}
\end{array} \]

We show perhaps the most complicated proof of the lemma!
Our goal is to show:

\[\frac{1}{6} > \text{subject to} \]
Our goal is to show:

\[> \frac{1}{6} \text{ subject to } \begin{array}{c}
\begin{array}{c}
\text{red triangle} \\
\text{blue triangle} \\
\text{red V} \\
\text{blue V} \\
\text{blue edge} \\
\text{red edge}
\end{array}
\end{array} = 0 \]

Observe that \(\) and \(\) can be swapped.
Our goal is to show:

\[\frac{1}{6} > \text{ subject to} \]

\[\begin{align*}
\text{\textbullet} & = \text{\textbullet} = \text{\textbullet} = \text{\textbullet} = \text{\textbullet} = \text{\textbullet} = 0
\end{align*} \]

Observe that \[\text{\textbullet} \] and \[\text{\textbullet} \] can be swapped. Change to a colorblind setting. \[\text{\textbullet} \] is a monochromatic triangle (red or blue).
Our goal is to show:

\[\frac{1}{6} \text{ subject to } \begin{align*}
\end{align*} \begin{align*}
\end{align*} = 0 \]

Observe that \[\text{and } \begin{align*}
\end{align*} \begin{align*}
\end{align*} \] can be swapped. Change to a colorblind setting. \[\begin{align*}
\end{align*} \begin{align*}
\end{align*} \] is a monochromatic triangle (red or blue).

Our new goal is to show:

\[\frac{1}{6} \text{ subject to } \begin{align*}
\end{align*} \begin{align*}
\end{align*} = 0 \]
Our goal is to show:

\[> \frac{1}{6} \text{ subject to } \begin{align*}
\triangle &= \triangle \\
&= 0
\end{align*} \]

Observe that \(\triangle \) and \(\square \) can be swapped. Change to a colorblind setting. \(\triangle \) is a monochromatic triangle (red or blue).

Our new goal is to show:

\[> \frac{1}{6} \text{ subject to } \begin{align*}
\triangle &= \triangle \\
&= 0
\end{align*} \]

Colorblind setting will allow to fit the computation on these slides. Also important for bigger applications.
Our goal is to show:

\[
\begin{align*}
 \left\langle \frac{1}{6} \right\rangle & \quad \text{subject to} \quad \begin{array}{ccc}
 & \bullet & \\
 \bullet & & \\
 \end{array} = \begin{array}{ccc}
 & \bullet & \\
 & & \\
 \bullet & & \\
 \end{array} = \begin{array}{ccc}
 & & \\
 & & \\
 & & \\
 \end{array} = 0
\end{align*}
\]
Our goal is to show:

\[\frac{1}{6} \text{ subject to } \begin{array}{cccc} & & & \end{array} = 0 \]

Basic equations:

\[\frac{1}{6} \left(\begin{array}{cccc} & & & \end{array} + 0 + 0 + 1 + 3 + 2 + 6 \right) = 1 \]

\[\frac{1}{6} \left(\begin{array}{cccc} & & & \end{array} \right) = 1 \]
We use flags with type σ_1 of size two

$$F = \begin{pmatrix} \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} \end{pmatrix}^T.$$

For a positive semidefinite matrix M

$$0 \leq \begin{bmatrix} F^T MF \end{bmatrix}_{\sigma_1} = \begin{bmatrix} F^T \begin{pmatrix} 0.0744 & -0.0223 & -0.0520 \\ -0.0223 & 0.0238 & -0.0014 \\ -0.0520 & -0.0014 & 0.0536 \end{pmatrix} F \end{bmatrix}_{\sigma_1}$$

$$= -0.0116 \begin{array}{c} \end{array} - 0.3568 \begin{array}{c} \end{array} - 0.1784 \begin{array}{c} \end{array} - 0.0112 \begin{array}{c} \end{array} + 0.3216 \begin{array}{c} \end{array} + 0 \begin{array}{c} \end{array} + 0 \begin{array}{c} \end{array}.$$
\[\cdot = \frac{1}{6} \left(\begin{array}{c}
1 \\
+ 0 \\
+ 0 \\
+ 1 \\
+ 3 \\
+ 2 \\
+ 6
\end{array} \right) \]

\[0 \geq 0.0116 + 0.3568 + 0.1784 + 0.0112 - 0.3216 + 0 + 0 \]
We sum the equations and obtain

\[0 \geq 0.1782 + 0.3568 + 0.1784 + 0.1778 + 0.1784 + 0.33 + \ldots > 0.17 > \frac{1}{6}. \]
\[\frac{1}{6} = \frac{1}{6} \left(1 + 0 + 0 + 1 + 3 + 2 + 6 \right). \]

\[
0 \geq 0.0116 + 0.3568 + 0.1784 + 0.0112 - 0.3216 + 0 + 0.
\]

We sum the equations and obtain

\[
\geq 0.1782 + 0.3568 + 0.1784 + 0.1778 + 0.1784 + 0.33 + \frac{1}{6}.
\]

Note that the matrix \(M \) was not unique or tight (easy rounding).
(bound \(\geq \frac{1}{5} \) is obtainable)
What have we tried (so far)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower</th>
<th>Upper</th>
<th>Our upper</th>
<th>Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(K_4^-, K_4^-, K_4^-)$</td>
<td>28</td>
<td>30</td>
<td>28</td>
<td>2589</td>
</tr>
<tr>
<td>$R(K_3, K_4^-, K_4^-)$</td>
<td>21</td>
<td>27</td>
<td>23</td>
<td>4877</td>
</tr>
<tr>
<td>$R(K_4, K_4^-, K_4^-)$</td>
<td>33</td>
<td>59</td>
<td>47</td>
<td>9476</td>
</tr>
<tr>
<td>$R(K_4, K_4, K_4^-)$</td>
<td>55</td>
<td>113</td>
<td>104</td>
<td>11410</td>
</tr>
<tr>
<td>$R(C_3, C_5, C_5)$</td>
<td>17</td>
<td>21?</td>
<td>18</td>
<td>5291</td>
</tr>
<tr>
<td>$R(K_4, K_7^-)$</td>
<td>37</td>
<td>52</td>
<td>49</td>
<td>11747</td>
</tr>
<tr>
<td>$R(K_{2,2,2}, K_{2,2,2})$</td>
<td>30</td>
<td>60?</td>
<td>32</td>
<td>8792</td>
</tr>
<tr>
<td>$R(K_5^-, K_6^-)$</td>
<td>31</td>
<td>39</td>
<td>38</td>
<td>14889</td>
</tr>
<tr>
<td>$R(K_5, K_6^-)$</td>
<td>43</td>
<td>67</td>
<td>62</td>
<td>18186</td>
</tr>
<tr>
<td>$R(K_4, K_6)$</td>
<td>36</td>
<td>41</td>
<td>44</td>
<td>11667</td>
</tr>
<tr>
<td>$R(K_4, K_7)$</td>
<td>49</td>
<td>61</td>
<td>67</td>
<td>11765</td>
</tr>
<tr>
<td>$R(K_5, K_5)$</td>
<td>43</td>
<td>49</td>
<td>53</td>
<td>8722</td>
</tr>
<tr>
<td>$R(K_5, K_5^-)$</td>
<td>30</td>
<td>34</td>
<td>35</td>
<td>14169</td>
</tr>
<tr>
<td>$R(K_3, K_3, K_4)$</td>
<td>30</td>
<td>31</td>
<td>33</td>
<td>7878</td>
</tr>
<tr>
<td>$R(K_3, K_3, K_5)$</td>
<td>45</td>
<td>57</td>
<td>61</td>
<td>8433</td>
</tr>
<tr>
<td>$R(K_3, K_4, K_4)$</td>
<td>55</td>
<td>79</td>
<td>85</td>
<td>15625</td>
</tr>
<tr>
<td>$R(K_3, K_3, K_3, K_3)$</td>
<td>51</td>
<td>62</td>
<td>65</td>
<td>18571</td>
</tr>
<tr>
<td>$R(K_4, K_6^-)$</td>
<td>30</td>
<td>33</td>
<td>33</td>
<td>11372</td>
</tr>
<tr>
<td>$R(K_3, C_4, K_4)$</td>
<td>27</td>
<td>32</td>
<td>32</td>
<td>9928</td>
</tr>
<tr>
<td>$R(C_4, C_4, K_4)$</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>11857</td>
</tr>
</tbody>
</table>
Thank you for your attention!