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Abstract

We use a technique based on matroids to construct two nonzero patterns Z1 and Z2 such
that the minimum rank of matrices described by Z1 is less over the complex numbers than
over the real numbers, and the minimum rank of matrices described by Z2 is less over the
real numbers than over the rational numbers. The latter example provides a counterexample
to a conjecture in [AHKLR] about rational realization of minimum rank of sign patterns.
Using Z1 and Z2, we construct symmetric patterns, equivalent to graphs G1 and G2, with
the analogous minimum rank properties. We also discuss issues of computational complexity
related to minimum rank.
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1 Introduction

The (real symmetric) minimum rank problem (for a graph) is to determine the minimum rank
among real symmetric matrices whose zero-nonzero pattern of off-diagonal entries is described
by a given (simple) graph G. The zero-nonzero pattern described by the graph has tremendous
influence on minimum rank. For example, a matrix associated with a path on n vertices (Pn) is a
symmetric tridiagonal matrix with nonzero sub- and super-diagonal, and thus has minimum rank
n − 1, whereas the complete graph on n vertices (Kn) has minimum rank 1. For a discussion of
the background of the minimum rank problem (and an extensive bibliography), see [FH].

Much of the work on the minimum rank problem has focused on real symmetric matrices,
but symmetric matrices over other fields have also been studied (see [BHL]). While examples of
differences in minimum rank over different fields are known, these examples involve fields of different
characteristic or size. We use a technique based on matroids to construct two zero-nonzero patterns
CS1 and CS2 such that the minimum rank of matrices described by CS1 is less over the complex
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numbers than over the real numbers1, and the minimum rank of matrices described by CS2 is less
over the real numbers than over the rational numbers. The pattern CS2 immediately provides a
counterexample to a conjecture in [AHKLR] about rational realization of minimum rank of sign
patterns. We then use CS1 and CS2 to construct symmetric patterns, equivalent to graphs G1 and
G2, with the analogous minimum rank properties. All graphs discussed in this paper are simple,
meaning no loops or multiple edges. The order of a graph G, denoted |G|, is the number of vertices
of G.

For a symmetric n×n matrix A over a field F , the graph of A, denoted G(A), is the graph with
vertices {1, . . . , n} and edges {{i, j}| aij 6= 0 and i 6= j}. Note that the diagonal of A is ignored in
determining G(A). The set of symmetric matrices of graph G over field F is

SF
G = {A ∈ Fn×n : AT = A and G(A) = G}.

Since we will need to consider non-symmetric matrices, as well as matrices over the rational
and complex numbers, we adopt the perspective that we are finding the minimum of the ranks of
the matrices in a given family F of matrices, and define

mr(F) = min{rank(A) : A ∈ F}.

Note that what we are denoting by mr(SR
G) is commonly denoted by mr(G) in papers that study

only the minimum rank of the real symmetric matrices described by a graph, and mr(SF
G ) is

sometimes denoted by mr(F,G) or mrF (G).
Clearly mr(SQ

G) ≥ mr(SR
G) ≥ mr(SC

G), but in all previously known examples, including all graphs
having minimum rank less than 3, the minimum rank was the same for all fields of characteristic
zero [BHL]. Using the notation just introduced, in Section 3 we show that mr(SR

G1
) > mr(SC

G1
)

and mr(SQ
G2

) > mr(SR
G2

). However, these examples are quite large (the orders are 75 and 181,
respectively). First we show that for very small graphs (order ≤ 6), all these minimum ranks are
equal.

A cut-vertex of a connected graph is a vertex whose deletion disconnects G. In [BFH] it was
shown that if G has a cut-vertex, the problem of computing the minimum rank of G can be reduced
to computing minimum ranks of certain subgraphs. Specifically, let v be a cut-vertex of G. For
i = 1, . . . , h, let Wi be the vertices of the ith component of G − v and let Gi be the subgraph
induced by {v} ∪ Wi. Then rv(G) = min

{∑h
1 rv(Gi), 2

}
, where rv(G) = mr(G) −mr(G − v) is

called the rank-spread of G at vertex v. Thus

mr(G) =
h∑
1

mr(Gi − v) + min

{
h∑
1

rv(Gi), 2

}
.

Wayne Barrett has observed that the proof remains valid over any field. Hence we have the
following.

Observation 1.1. If the minimum rank of H is independent of field for all H such that |H| < |G|
and G has a cut-vertex, then the minimum rank of G is independent of field.

Throughout this paper. F denotes a field of characteristic 0, and Fn denotes the set of n by 1
vectors with entries in F.

A graph is 2-connected if its order is at least 3 and it has no cut-vertex. A linear 2-tree is a
2-connected graph G that can be embedded in the plane such that the graph obtained from the
dual of G after deleting the vertex corresponding to the infinite face is a path. Equivalently, a
linear 2-tree is a “path” of cycles built up one cycle at a time by identifying an edge of a new
cycle with an edge (that has a vertex of degree 2) of the most recently added cycle. In [HH] it is

1We thank Chris Godsil and Jim Oxley for providing references to relevant papers on matroids. A good general
reference on matroids is [O].
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established that for a 2-connected graph G, mr(SR
G) = |G|−2 if and only if G is a linear 2-tree, but

the proof is specific to the real numbers. In [JLS], a complete characterization of graphs having
minimum rank |G| − 2 over fields is given, and as a consequence it is shown that for any field F,
mr(SF

G) = |G|−2 if and only if G is a linear 2-tree. (Note that in [JLS] what we call a linear 2-tree
is called a linear singly edge-articulated cycle graph or LSEAC graph.)

Proposition 1.2. Let G be a connected graph such that |G| ≤ 6 and let F be a field of characteristic
0. Then mr(SF

G) = mr(SR
G). In particular, mr(SQ

G) = mr(SR
G) = mr(SC

G) for any graph G such that
|G| ≤ 6.

Proof. The result is clear if |G| = 1, 2. In general, mr(SF
G) = 1 if and only if G is a complete graph,

and mr(SF
G) = |G|− 1 if and only if G is a path. The latter statement is a consequence of Fiedler’s

Tridiagonal Matrix Theorem (proved over the real numbers in [F]; the proof in [RS] is valid for
any field of characteristic 0). This establishes the result for |G| = 3, 4. From [BHL], if |G| = 5,
mr(SF

G) = 2 if and only if G is not K5, not Dart, not n, and G does not contain P4 as an induced
subgraph (see Figure 1). For |G| = 5 this is sufficient to establish the result, since for |G| = 5,
graphs having minimum rank 3 over F are precisely those not having minimum rank 1, 2, or 4. In
[HH] and [JLS] it is shown that for graphs G without cut-vertices, mr(SF

G) = |G| − 2 if and only if
G is a linear 2-tree. Together with the fact that the result is true for |G| ≤ 5 and Observation 1.1,
this establishes the result for |G| = 6.

Figure 1: Some forbidden induced subgraphs for mr(SF
G) ≤ 2

P4 Dart n

Obviously Proposition 1.2 can be applied to conclude that there is no difference in minimum
rank over fields of characteristic 0 for graphs having each connected component of order 6 or less,
and can be combined with Observation 1.1 to to show that many additional small graphs have no
difference in minimum rank over fields of characteristic 0.

There is a graph of order 6 for which the minimum rank over Z2 differs from the minimum
rank over R.

Example 1.3. Let K3�K2 be the graph constructed from two copies of K3 joined by a complete
matching; K3�K2 is shown in Figure 2. Then mr(SR

K3�K2
) = 3 since K3�K2 has an induced P4

but is not a linear 2-tree (in fact, the block matrix
[
J − I I

I (J − I)−1

]
, where I is the identity

matrix and J is the all ones matrix, has rank 3).

Figure 2: The graph K3�K2
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With appropriate ordering of the vertices, any matrix in SZ2(K3�K2) is of the form
d1 1 1 1 0 0
1 d2 1 0 1 0
1 1 d3 0 0 1
1 0 0 d4 1 1
0 1 0 1 d5 1
0 0 1 1 1 d6


and computation using all 64 possible (d1, . . . , d6) shows the rank is at least 4.

In order to construct our examples of graphs where the minimum rank differs over R and C
or over R and Q, we will first need to construct examples over non-symmetric nonzero patterns.
A nonzero pattern Z = [zij ] is a matrix whose entries zij are elements of {∗, 0}. Given a pattern
Z = [zij ], we let MF

Z denote the set of all matrices A = [aij ] over F such that aij 6= 0 if and only
if zij = ∗. A realization of Z over F is a matrix in MF

Z . Note that (unlike the set of symmetric
matrices described by a graph), here the diagonal is constrained by the zero-nonzero pattern.

2 Minimum ranks of patterns over the rational, real and
complex numbers

Let V be an n by k matrix over F. We denote the nullspace of V , {w ∈ Fk : V w = 0}, by NS(V ),
and the left nullspace of V , {w ∈ Fn : wT V = 0}, by LNS(V ). Throughout most of this section,
the of rank of V will be k; in this case, dim(LNS(V )) = n− rank V = n−k. For an m by n matrix
A over F, we denote the row space of A (the subspace of Fn spanned by the rows of A) by row(A).

A cycle of V is a subset α of {1, 2, . . . , n} such that the rows of V indexed by α are linearly
dependent and each proper subcollection of these columns is linearly independent. Let ~α denote
the 1 by n pattern obtained from α by placing a ∗ in position j when j ∈ α, and a 0 in position j
otherwise. A cycle matrix CV of V is a matrix whose rows are the patterns ~α as α runs over the
cycles of V . Note that we don’t prescribe the ordering of the rows of CV . Thus V has many cycle
matrices, but they are all obtained from a single cycle matrix by permutation of rows.

Lemma 2.1. Let V be an n by k matrix of rank k with entries from F, and let CV be a cycle
matrix of V . Also, let α be the set of indices of a collection of linearly independent rows of V .
Then there exists a subset β of row indices and a subset γ of column indices such that α ∩ γ = ∅
and CV [β, γ] is an (n− k) by (n− k) matrix whose rows can be permuted to the matrix

∗ 0 0 · · · 0
0 ∗ 0 · · · 0

0 0 ∗
. . . 0

...
...

. . . . . .
...

0 0 · · · 0 ∗


Proof. Since V has rank k, we may assume without loss of generality that α is {1, 2, . . . , k}. For
each j ∈ {k + 1, . . . , n}, rows 1, 2, . . . , k, j of V are linearly dependent, and thus there is a cycle of
V containing j and contained in {1, 2, . . . , k, j}. Hence, there is a row of V with a ∗ in column j,
and 0s in all positions ` with ` > k and ` 6= j. The result now follows.

Lemma 2.2. Let V be an n by k matrix of rank k with entries from the field F, and let CV be a
cycle matrix of V . Then mr(MF

CV
) = n− k.
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Proof. By Lemma 2.1, mr(MF
CV

) ≥ n − k. For each row α of CV there is a realization of α

that belongs to LNS(V ). Hence, there is a realization A ∈ MF
CV

such that AV = O Thus,
mr(MF

CV
) ≤ rank(A) ≤ n− rank(V ) = n− k.

In his early work on matroids [M], Saunders MacLane gave examples of matroids that can be
represented over the complex number but not the real numbers and over the real numbers but
not the rational numbers. We use these ideas to construct two matrices, and from these matrices,
patterns that have differing minimum ranks. We begin with the example that distinguishes the
complex numbers from the real numbers. Let

S1 =



1 0 0
0 1 0
1 1 0
1 ω + 1 ω
0 0 1
1 ω + 1 ω + 1
1 1 ω + 1
0 1 1
1 0 ω


where ω = −1+

√
3i

2 .
It is not difficult to verify that the cycles of S1 correspond to the lines and 4-sets of points

in general position of AG(2, 3), the affine plane of order 3, as labeled in Figure 3. There are 12
3-cycles (see Figure 3). Since there are

(
9
4

)
4-element subsets, and each 3-cycle excludes 6 of these,

there are 126− (6)(12) = 55 4-cycles and thus a total of 66 cycles of S1.

1
2

3

64

7

8

9

5

Figure 3: Diagram of AG(2, 3) for S1

We shall make use of several known results, which are a matrix theoretic restatement of
MacLane’s results on matroids.

Theorem 2.3. There is no real matrix T such that CT = CS1 .

Proof. Suppose to the contrary that there exists a 9 by ` real matrix W = [wij ] of rank ` whose
cycle matrix is CS1 . Since every cycle of S1 has at least 3 elements, each pair of rows of W are
linearly independent. Since every set of 4 rows of S1 is linearly dependent, so is every set of 4 rows
of W . Hence W has rank at most 3 and ` ≤ 3. Rows 1, 2 and 5 of S1 are linearly independent.
Thus no cycle of S1 (and hence of W ) is contained in {1, 2, 5}. Therefore, rows 1, 2, 5 of W are
linearly independent. Therefore, W has rank 3, that is, ` = 3.

Note that post-multiplying W by an invertible (real) matrix, or pre-multiplying W by an
invertible (real) diagonal matrix does not change its cycle matrix. Thus, we may assume without
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loss of generality that the leftmost nonzero entry in each row of W is a 1 and that

W [{1, 2, 5}, :] = I3.

Because {1, 2, 3} is a cycle, and each pair of columns of W is linearly independent, we have
that w31 6= 0, w32 6= 0 and w33 = 0. Thus, by scaling columns and then rows, we may assume
without loss of generality that

W [{1, 2, 3, 5}, :] =


1 0 0
0 1 0
1 1 0
0 0 1

 .

Similarly, using that {2, 5, 8} is a cycle of S1, we conclude that without loss of generality row
8 of W is [

0 1 1
]
.

Using that {1, 5, 9} is a cycle, we see that row 9 of W is[
1 0 a

]
for some nonzero real number a.

Next use that {3, 5, 7} is a cycle to conclude that row 7 of W is[
1 1 b

]
for some nonzero real number b.

Next use that {1, 6, 8} is a cycle to conclude that row 6 of W has the form[
1 c c

]
for some nonzero real number c.

Thus, we have that W has the form 

1 0 0
0 1 0
1 1 0
x y z
0 0 1
1 c c
1 1 b
0 1 1
1 0 a


for some nonzero real numbers, a, b, c and real numbers x, y, z.

Since {7, 8, 9} is a cycle,

0 = det

 1 1 b
0 1 1
1 0 a

 = a + 1− b.

Since {3, 6, 9} is a cycle,

0 = det

 1 1 0
1 c c
1 0 a

 = ac + c− a.
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Since {2, 6, 7} is a cycle,

0 = det

 0 1 0
1 c c
1 1 b

 = c− b.

These equations lead to b = a + 1, ac + c− a = 0, and c = b. Thus, c = a + 1, and substitution
into the second equation gives: a2 + a + 1 = 0. Therefore, a = −1±

√
−3

2 , which contradicts the fact
that W is a real matrix.

Therefore, there is no real matrix whose cycle matrix is CS1 .

Corollary 2.4. mr(MR
CS1

) = 7 > 6 = mr(MC
CS1

).

Proof. By Lemma 2.2, mr(MC
CS1

) = 6.
Let A be a real realization of CS1 of minimum rank. We claim that rank(A) ≥ 7. Suppose

to the contrary that rank(A) ≤ 6. Let W be a real matrix whose columns form a basis for the
nullspace of A. By Lemma 2.1, CS1 contains submatrix that is a 6 by 6 permutation matrix. Thus,
rank(A) = 6 (and so W has 3 columns). Note that since dim row(A) = rank(A) = 6 = 9−rank(W ),
row(A) = LNS(W )

Let α be a collection of row indices such that set of rows of S1 indexed by α is linearly
independent. By Lemma 2.1, 6 ≤ rank(A[:, α]). The existence of a nonzero vector v ∈ row(A)
whose support is contained in α leads to the contradiction 6 = rank(A) ≥ 1+rank(A[:, α]) ≥ 1+6 =
7. Thus, the row space of A contains no nonzero vector whose support is contained in α. Since
row(A) = LNS(W ), the set of rows of W indexed by α is linearly independent. We have shown:
whenever a collection of rows of S1 is linearly independent, the corresponding collection of rows of
W is also linearly independent (or equivalently, if a collection of rows of W is linearly dependent,
then the corresponding collection of rows of S1 is also linearly dependent). In particular, no pair
of rows of W is linearly dependent.

Let α be a cycle of W of size 3. Then by the preceding observation, the rows of S1 indexed by
α are linearly dependent, and since each pair of rows of S1 is linearly independent, α is a cycle of
S1 of size 3.

Let β be a cycle of S1 of size 3. Then A contains a nonzero row whose support is β, and
hence the rows of W indexed by β are linearly dependent. Since each pair of rows of W is linearly
independent, β is a cycle of W of size 3.

We have shown that V and W have the same cycles of size 3. The cycles of W (respectively,
S1) of size 4, are precisely the 4-sets which contain no cycle of size 3. Thus, the cycles of W and
S1 of size 4 are equal. Since both W and S1 have rank 3, it follows that W and S1 have the same
cycles. This contradicts Theorem 2.3.

Therefore, mr(MR
CS1

) ≥ 7 > 6 = mr(MC
CS1

).
To see that mr(MR

CS1
) = 7, consider the 9 by 2 real matrix X whose jth row is (1, j). Clearly,

every 2 by 2 submatrix of X is invertible, and hence for each 1 by 9 pattern with 3 or more nonzeros
there is a realization that belongs to the left nullspace of X. Therefore, there is a realization of
MR

CS1
of rank at most (and hence exactly) 7.

Note that in the proof of Theorem 2.3, no cycle of S1 containing 4 is used. It follows that there
is no real matrix whose cycles are the same as those of S1[{4}, :]. As the points of AG(3, 2) are
interchangeable, there is no real matrix whose cycles are the same as those of S1[{j}, :] for each j.
This observation and an argument similar to that of Corollary 2.4 prove the following.

Corollary 2.5. Let S be a pattern obtained from S1 by deleting a row. Then

mr(MR
CS

) = 6 > 5 = mr(MC
CS

).
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We now construct an example that distinguishes the rational numbers from the real numbers.
Let

S2 =



1 1
2 +

√
5

2 0
1 1 1
1 − 1

2 +
√

5
2 0

1 0 1
0 1 1
1 1

2 +
√

5
2 1

1 1 3
2 −

√
5

2

1 − 1
2 +

√
5

2 − 1
2 +

√
5

2
1 0 0
0 1 0
0 0 1


It is not difficult to verify that the 3-cycles of S2 correspond to the subsets of 3 collinear points

in Figure 4 (see the appendix, §6, for the details of a computer implementation). There are twenty-
five 3-cycles, one from each of the five lines with 3 points and four from each of the five lines with
4 points. The 4-cycles are all sets of 4 points that do not contain a 3-cycle. Each line with 3 points
excludes eight 4-cycles. Each subset of three points of a line with 4 points excludes seven 4-cycles
and the entire line is also excluded, so a line of four points excludes twenty-nine 4-cycles. Thus
there are 330− (8)(5)− (29)(5) = 145 4-cycles, and 170 cycles of S2.

1

2

3

6

4

7

8 9

5

10

11

Figure 4: Diagram for S2

Theorem 2.6. There is no rational matrix T such that CT = CS2 .

Proof. The proof is much like that of Theorem 2.3, so we only summarize the steps.
Suppose to the contrary that W is an 11 by ` matrix of rank ` over Q whose cycles are those

of S2. Since each set of 4 rows of S2 is linearly dependent, and W has the same cycles as S2, each
set of 4 rows of W is linearly dependent. Thus ` ≤ 3. Since {9, 10, 11} contains no cycle of S2,
rows 9, 10 and 11 of W form a linearly independent set. Hence ` = 3.

By post-multiplying W by an invertible, rational matrix, without loss of generality, we may
assume that W [{8, 9, 10}, :] = I3.

Since {1, 9, 10}, {4, 9, 11}, {3, 9, 10} are cycles of S2, we may assume (after possibly scaling
rows and columns) that row

W [{1, 3, 4, 9, 10, 11}, :] =


1 1 0
1 a 0
1 0 1
1 0 0
0 1 0
0 0 1

 .
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Since {4, 6, 10} and {1, 6, 11} are cycles, row 6 of W is (without loss of generality)[
1 1 1

]
.

Since {5, 10, 11} is a cycle of S2, row 5 of W has the form[
0 1 b

]
for some nonzero b. Using the cycles {2, 5, 9} and {2, 4, 10}, we see that row 2 is[

1 1/b 1
]
.

Because {2, 7, 11} and {1, 4, 7} are cycles, row 7 of A has the form[
1 1/b 1− 1/b

]
.

Since {3, 5, 7} is a cycle, 0 = detA[{3, 5, 7}, :] = ab − 1/b, so ab = 1/b. Similarly, 0 =
detA[{3, 5, 6}, :] = 1 + ab − b, and substitution of ab = 1/b into this equation yields the equa-
tion 1 + 1/b− b = 0. Thus, b = 1±

√
5

2 , b is irrational, and we have obtained a contradiction.

The proof of the next corollary is virtually identical to that of Corollary 2.4, and is left to the
reader.

Corollary 2.7. mr(MQ
CS2

) = 9 > 8 = mr(MR
CS2

).

Note that Corollary 2.7 provides a counterexample to the central conjecture in [AHKLR, pp.
112-113],

In this paper we raise the following basic conjecture. For any m × n sign pattern
matrix A with mr(A) = k, there exists a rational matrix (equivalently, an integer
matrix) B ∈ Q(A) such that rank B = k.

With our notation, this would be:

For any m × n sign pattern matrix Z with mr(MR
Z) = k, there exists a rational

matrix (equivalently, an integer matrix) B in the sign pattern class of Z such that
rank B = k.

The sign-pattern class restricts the signs of the entries, a stronger restriction than restricting the
zero-nonzero pattern. Thus we have

Counterexample 2.8. Let A be a realization of CR
S2

of rank 8, and let ZCS2
be the sign pattern

of A. By Corollary 2.7 there is no rational matrix with sign pattern Z of rank 7. Hence the
minimum rank among the rational matrices with sign pattern Z is larger than the minimum rank
among the real matrices with sign pattern ZCS2

. An explicit example of such ZCS2
and details of

its construction are given in the appendix, §6.

Note that in the proof of Theorem 2.6, row 8 of S2 was not used. We conclude that there
is no rational matrix whose cycle matrix is S2[{8}, :]. As there is an automorphism of Figure 1
that takes 8 to any one of {1, 2, . . . , 10}, we can replace 8 by any one of {1, 2, . . . , 10}. Just like
Corollary 2.5, we have the following result, whose proof is left to the reader.

Corollary 2.9. Let S be a pattern obtained from S2 be deleting any one of rows 1, . . . , 10. Then

mr(CQ
S ) = 8 > 7 = mr(CR

S ).
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3 Graphs and minimum rank

We now return to the question of variation over F = C, R, or Q of mr(SF
G), the minimum rank of

a graph over F. Recall that the matrices in SF
G are symmetric and the diagonal is unrestricted.

Let CS1 be a cycle matrix of S1, and let G1 be the bipartite graph whose bi-adjacency matrix
is CS1 . Thus, G1 has 9 vertices, say 1,2,. . . , 9, corresponding to the columns of CS1 and 66 vertices
corresponding to the rows of CS1 , for a total of 75 vertices.

Note that if M is a minimal rank realization of MC
CS1

, respectively, MR
CS1

, then[
O MT

M O

]
is a complex (respectively real) matrix of rank 6 + 6 = 12 (respectively, 7 + 7 = 14) whose graph
is G1. Hence, mr(SC

G1
) ≤ 12 and mr(SR

G1
) ≤ 14. We claim that equality holds in both of these

inequalities.

Theorem 3.1. mr(SR
G1

) = 14 > 12 = mr(SC
G1

).

Proof. Let A be a matrix whose graph is G1. Thus, A has the form[
D BT

B E

]
, (1)

where D and E are diagonal matrices, and B has pattern CS1 . We claim that if A is complex
(respectively real), then rank(A) ≥ 12 (respectively, rank(A) ≥ 14)

If each diagonal entry of E is 0 and A is complex (respectively, real), then by Corollary 2.4,
rank(A) ≥ rank(B) + rank(BT ) ≥ 6 + 6 = 12 (respectively, rank(A) ≥ rank(B) + rank(BT ) ≥
7 + 7 = 14).

If A is complex (respectively, real) and E has 12 (respectively 14) or more nonzero entries,
then rank(A) ≥ rank(E) ≥ 12 (respectively, rank(A) ≥ rank(E) ≥ 14). Otherwise, A is complex
(respectively, real) and E has k nonzero entries with 1 ≤ k ≤ 11 (respectively, 1 ≤ k ≤ 13).

Note that rows 1, 2 and 4 of S1 are linearly independent. Thus for each j ∈ {1, 2 . . . , 9}\{1, 2, 4}
there is a cycle of S1 that contains j and is contained in {1, 2, 4, j}. It can be verified that these
cycles are

{1, 2, 3}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 4, 7}, {1, 2, 4, 8}, {2, 4, 9}.

Let α1 be the indices of the rows of B corresponding to the these cycles. Similarly, let α2 the
indices of the rows corresponding to the cycles

{6, 8, 1}, {5, 8, 2}, {5, 6, 8, 3}, {5, 6, 4}, {5, 6, 8, 7}, {5, 6, 8, 9},

determined by linearly independent rows 5, 6, 8 (the order in which the entries in a cycle are listed
is irrelevant, and we have listed the all the entries of the cycle that are in 5, 6, 8 first). Let α3 the
indices of the rows corresponding to

{3, 7, 9, 1}, {3, 7, 9, 2}, {3, 7, 9, 4}, {3, 7, 5}, {3, 9, 6}, {7, 9, 8},

determined by the linearly independent rows 3, 7, 9. Note that the α` are mutually disjoint. By
construction (cf. Lemma 2.1), each CS1 [α`, :] has a 6 by 6 permutation matrix as a submatrix.

Let β = {j : ejj 6= 0}. By the Pigeonhole Principle, there is a j such that |αj ∩ β| ≤ bk/3c.
Thus, A[αj ∪ β] is permutation similar to a matrix of the form B[αj \ β, :]T

B[αj \ β, :] O O
O E[β]

 ,
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and thus has rank at least k + 2(6 − bk/3c) ≥ 12 + 2
3k > 12. Hence, if A is complex, then

rank(A) ≥ 12, and it follows that mr(SC
G1

) = 12.
Otherwise, A is real and

rank(A) ≥ 12 + k − 2bk/3c. (2)

Hence, rank(A) ≥ 14, except in possibly the cases that k = 1 or k = 3. Note that even in these
cases, we have already proved that rank(A) ≥ 13 and thus that mr(SR

G1
) ≥ 13 > 12 = mr(SC

G1
).

First consider the case that k = 1. Without loss of generality, e11 = 1. Let α be the cycle of
S1 corresponding to row 1 of B, and let j ∈ α. Let β = {` : b`,j = 0}, and observe the B[β, {j}]
is a realization of the cycle matrix obtained from S1 by deleting the j row. Thus, by Corollary
2.5, B[β, {j}] has rank at least 6. Since j appears in a cycle that is not α, It follows that M has a
submatrix of the form 

B[β, {j}]T
b 0 · · · 0

1 0 0 · · · 0
b 0 0 0 · · · 0

B[β, {j}]
0
...
0

0
...
0

0
...
0

O


,

with b 6= 0, and we conclude that A has rank at least 6 + 3 + 6 = 15 > 14.
Next consider the case k = 3. Assume to the contrary that M has rank 13. Equation (2)

implies that |αj ∩ β| = 1 for j = 1, 2, 3; otherwise rank A ≥ rank A[αj ∪ β] ≥ 12 + k = 15 for some
j. The affine plane AG(2, 3) has 4 sets of parallel lines. Since |β| = 3, there exist two non-parallel
lines of AG(2, 3) neither of which corresponds to row of B whose index is index in β. Without loss
of generality, we may assume that these lines are {1, 2, 3}, and {2, 4, 9}.

Now let

α′1 = {{1, 2, 3}, {2, 9, 4}, {1, 9, 5}, {1, 2, 9, 6}, {1, 2, 9, 7}, {1, 2, 9, 8}},

α′2 = {{3, 4, 5, 1}, {3, 4, 5, 2}, {4, 5, 6}, {3, 5, 7}, {3, 4, 8}, {3, 4, 5, 7}},

α′3 = {{6, 8, 1}, {6, 7, 2}, {6, 7, 8, 3}, {6, 7, 8, 4}, {6, 7, 8, 5}, {7, 8, 9}}.

It is easy to verify that the α′j are mutually disjoint sets of cycles of S1. Hence, arguing as before,
|α′j ∩ β| = 1 for each α′j . Note that α′1 and α2 and α3 are mutually disjoint, and α1 ∩ α′1 =
{{1, 2, 3}, {2, 4, 9}}. Hence, β contains an index that corresponds to either {1, 2, 3} or {2, 4, 9},
which is a contradiction. Hence, A has rank at least 14, as desired.

Let CS2 be a cycle matrix of S2, and let G2 be the bipartite graph whose bi-adjacency matrix
is M . Thus, G2 has 11 vertices, say 1,2,. . . , 11, corresponding to the columns of CS2 and 170
additional vertices corresponding to the rows of CS2 (and hence to the cycles of S2), for a total of
181 vertices. As with the real vs. complex case, one can see immediately that mr(SR

CS2
) ≤ 16 and

mr(SQ
CS2

) ≤ 18. We claim that equality holds in both of these inequalities.

Theorem 3.2. mr(SQ
G2

) = 18 > 16 = mr(SR
G2

).

Proof. The proof proceeds as that of Theorem 3.1. Let A be a matrix whose graph is G2. Thus,
A has the form (1) where D and E are diagonal matrices, and B has pattern CS2 . We claim that
if A is real (respectively rational), then rank A ≥ 16 (respectively, rank A ≥ 18)

As before, the cases E has 0 or at least 16 (or 18 in the rational case) nonzero entries is easily
handled. Otherwise, A is real (respectively, rational) and E has k nonzero entries with 1 ≤ k ≤ 16
(respectively, 1 ≤ k ≤ 18).
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Now choose five disjoint 3-sets of independent rows of S2 (non-cycle 3-sets)in such a way as to
produce five pairwise disjoint sets of eight cycles. Specifically, for the independent sets we can use
{1, 2, 6}, {2, 3, 7}, {3, 4, 8}, {4, 5, 9}, {1, 5, 10}, yielding the following five sets of eight cycles:

α1 = {{1, 2, 6, 3}, {2, 6, 4}, {1, 2, 6, 5}, {1, 2, 6, 7}, {1, 2, 6, 8}, {1, 2, 6, 9}, {2, 6, 10}, {1, 6, 11}}
α2 = {{2, 3, 7, 1}, {2, 3, 7, 4}, {3, 7, 5}, {3, 7, 6}, {2, 3, 7, 8}, {2, 3, 7, 9}, {2, 3, 7, 10}, {2, 7, 11}}
α3 = {{4, 8, 1}, {3, 4, 8, 2}, {3, 4, 8, 5}, {3, 4, 8, 6}, {4, 8, 7}, {3, 4, 8, 9}, {3, 4, 8, 10}, {3, 8, 11}}
α4 = {{4, 5, 9, 1}, {5, 2, 9}, {4, 5, 3, 9}, {4, 5, 9, 10}, {4, 5, 9, 6}, {4, 5, 9, 7}, {5, 9, 8}, {4, 9, 11}}
α5 = {{1, 5, 10, 2}, {1, 10, 3}, {1, 5, 10, 4}, {1, 5, 10, 6}, {1, 5, 10, 7}, {1, 5, 10, 8}, {1, 10, 9}, {5, 10, 11}}

These comprise disjoint sets of 8 cycles of S2 and hence B[αj , :] contains a 8 by 8 permutation
matrix for each j.

Arguing as in the proof of Theorem 3.1, we see that there is a j such that |αj ∩ β| ≤ bk/5c.
Thus, A[αj ∪ β] is a matrix of the form B[α \ β, :]T

B[α \ β, :] O O
O E[β]

 ,

and has rank at least k + 2(8− bk/5c) ≥ 16 + 3k/5 > 16. Hence, if A is real, then rank(A) ≥ 16,
and it follows that mr(SR

G2
) = 16.

Otherwise, A is rational and

rank(A) ≥ 12 + k − 2bk/5c.

Hence, rank(A) ≥ 18, except possibly in the case that k = 1. This case is handled just as in the
proof of Theorem 3.1. Hence, A has rank at least 18, as desired.

4 Minimum rank and extension fields

Returning now to a not-necessarily symmetric pattern Z with the diagonal restricted by the pattern,
it is natural to ask for the relationship between mr(ME

Z ) and mr(MF
Z ), in the case that E is an

extension field of F . It is clear that mr(ME
Z ) ≤ mr(MF

Z ).

Theorem 4.1. Let E and F be fields with |E : F | = d < ∞ and let Z be an m by n pattern with
|F | > n. Then mr(MF

Z ) ≤ d ·mr(ME
Z )

Proof. Let A be a matrix over E. We claim that there exists a diagonal matrix D over E such
that the first F -component of each nonzero entry of AD is nonzero. This is clear if |E| = ∞.
Otherwise, for each nonzero element x of E there are at most |F |d−1 elements e of E such that the
first F -component of ex is 0. Thus, for each column of A there are at most n|F |d−1 elements e of
E such that scaling that column by e results in a column with at least one nonzero entry whose
first F -component is 0. Since n|F |d−1 < |E|, there exists an invertible diagonal matrix D such
that each nonzero entry of AD has a nonzero first component.

Without loss of generality, we may take D = I. Let 1 = α1, α2, . . . , αd be a basis of E viewed
as an F -vector space. Let B1, . . . , Bd be the unique matrices over F such that

A = B1 + α2B2 + · · ·αdBd.

Since D = I, B1 is a realization of MF
Z .

Let V be the column space of A. Let v1, v2, . . . , vk be a basis of V viewed as an E-vector
space. Note that V may also be viewed as a F vector space. Moreover V as an F vector space has
spanning set αjv` (1 ≤ j ≤ d, 1 ≤ ` ≤ k). Hence, the dimF (V ) ≤ d · dimE(V ).

12



Note that {B1x + α2B2x + · · ·αdBdx : x ∈ Fn} is a subspace contained in the F -vector space
V , and clearly has dimension at least rank(B1). Hence, rank(B1) ≤ d · rank(A), and the result
follows.

Thus,
mr(MR

Z)

mr(MC
Z)

≤ 2 for all patterns M and
mr(MR

CS
)

mr(MC
CS

)
≥ 6

5 where CS is the pattern in

Corollary 2.5. Two questions arise:

1. What is the supremum of
mr(MR

Z)

mr(MC
Z)

?

2. Is there an upper bound on
mr(MQ

Z)

mr(MR
Z)

?

5 Computation of minimum rank

Minimum rank over R or C can theoretically be computed by quantifier elimination. Our first
lemma records a standard conversion of the problem of computing the minimal rank of a graph
over a field F to verifying the validity or invalidity of statements over F (〈n〉 denotes the set
{1, . . . , n}). The equivalence of these statements is well-known (e.g., for (a) ⇔ (b) see [HLA, p.
6-7], for (a) ⇔ (d) see [GR, p. 179]).

Lemma 5.1. Let G be a graph with vertices 1, . . . , n and edge-set E, and let F be a field. Then
the following are equivalent:

(a) mr(SF
G ) ≤ k.

(b) The following statement is true over F :

∃B = [bij ] ∈ Fn×n, x1, . . . , xk, y1, . . . , yk ∈ Fn (3)
n∧

i,j=1

(bij = bji)
∧

(bij 6= 0 ∀i 6= j, ij ∈ E)
∧

(bij = 0 ∀i 6= j, ij /∈ E)

∧
(B =

k∑
i=1

xi(yi)T ).

(c) The following statement is true over F :

∃B = [bij ] ∈ Fn×n, (4)
n∧

i,j=1

(bij = bji)
∧

(bij 6= 0 ∀i 6= j, ij ∈ E)
∧

(bij = 0 ∀i 6= j, ij /∈ E)

∧
(detB[α, β] = 0 ∀ α, β ⊆ 〈n〉 with |α| = |β| = k + 1).

(d) The following statement is true over F :

∃B = [bij ] ∈ Fn×n, (5)
n∧

i,j=1

(bij = bji)
∧

(bij 6= 0 ∀i 6= j, ij ∈ E)
∧

(bij = 0 ∀i 6= j, ij /∈ E)

∧
(detB[α, α] = 0 ∀ α ⊆ 〈n〉 with |α| ≥ k + 1).
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Quantifier elimination (when available) allows one to verify the validity of statements of the form
that appear in Lemma 5.1. Over the complex numbers, the insovability of the system of equations
is determined by Hilbert’s Nullstellensatz. It says that a system of polynomials is unsolvable if and
only if the ideal generated by this polynomial contains the constant function 1. So the problem
is reduced to finding a good basis for the ideal gnenerated by these functions. This can be done
efficiently by finding a Gröbner basis.

Tarski [T] was the first to observe that quantifier-elimination can also be done over the reals
(and, equivalently, over every real closed field); in fact, Tarski produced an algorithm that does it.
Algorithms have been improved over the years and software for verifying the validity of sentences
(that are not too long) over the real or complex numbers is available. An algorithm by Renegar
[R] provides improved complexity bounds over the real numbers. Additional improvements to the
Renegar complexity bounds are available when executed on parallel processors.

Both Mathematica and Maple provide commands to determine whether existential statements
are true over the real or over the complex numbers. All the methods in Lemma 5.1 have been
successfully implemented by Jason Grout in Mathematica over the complex and real numbers,
and work for order 4 graphs. Method (d), which is generally the most efficient of the three, has
been used successfully on order 5 graphs. Unfortunately, it seems unlikely that these methods can
be successfully implemented for order larger than 6 using Mathematica on a personal computer.
Known results (see [BHL], [BFH], [HH]) have allowed computation of minimum rank for all graphs
of order 6 or less; this information is available in the minimum rank of small graphs catalog available
on-line [AIM].

6 Appendix

A sign pattern ZCS2
(see next page) having real minimum rank 8 that does not have a rational

realization of rank 8 was constructed from S2 using Mathematica as follows:

1. The matrix S2 was entered (in exact arithmetic using (-1 + Sqrt[5])/2), as were the following
utilities.

zero[m_, n_] := Table[Table[0, {j, 1, n}], {i, 1, m}];
submtx[A_, setr_, setc_] := Block[{M1 = A[[setr]]},

Transpose[Transpose[M1][[setc]]]];

2. A 25×3 matrix C3 of 3-cycles was created with the command

C3 = zero[25, 3];
c = 0;
Do[Do[
Do[If[Det[submtx[S2, {i, j, k}, {1, 2, 3}]] == 0,

c = c + 1; C3[[c, 1]] = i; C3[[c, 2]] = j; C3[[c, 3]] = k],
{k, j + 1, 11}],

{j, i + 1, 11}], {i, 1, 11}]

3. A 145×4 matrix C4 of 4-cycles were created with the command

C4x = Subsets[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, {4}];
C4 = C4x; Do[s = C4x[[k]];
Do[If[Dimensions[Intersection[C3, {Delete[s, i]}]][[1]] == 1,

C4 = Complement[C4, {s}]], {i, 1, 4}],
{k, 1, Dimensions[C4x][[1]]}]
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4. The following commands were executed to create a 170×11 real matrix A ∈MR
CS2

of rank 8
(forcing A to have the columns of S2 in its nullspace).

A = zero[170, 11];
Do[Clear[x, y, z, u, sol];

sol =
Solve[S2[[C3[[k, 1]]]] + y*S2[[C3[[k, 2]]]] + x*S2[[C3[[k, 3]]]] ==

{0, 0, 0}, {x, y}];
x = x /. sol[[1]]; y = y /. sol[[1]];
A[[k, C3[[k, 1]]]] = 1; A[[k, C3[[k, 2]]]] = y; A[[k, C3[[k, 3]]]] = x,

{k, 1, 25}];
Do[kk = k + 25; M = {S2[[C4[[k, 1]]]], S2[[C4[[k, 2]]]], S2[[C4[[k, 3]]]]};

m = Det[M];
M1 = {S2[[C4[[k, 4]]]], S2[[C4[[k, 2]]]], S2[[C4[[k, 3]]]]};
m1 = Det[M1]/m;
M2 = {S2[[C4[[k, 1]]]], S2[[C4[[k, 4]]]], S2[[C4[[k, 3]]]]};
m2 = Det[M2]/m;
M3 = {S2[[C4[[k, 1]]]], S2[[C4[[k, 2]]]], S2[[C4[[k, 4]]]]};
m3 = Det[M3]/m;
A[[kk, C4[[k, 1]]]] = m1;
A[[kk, C4[[k, 2]]]] = m2;
A[[kk, C4[[k, 3]]]] = m3;
A[[kk, C4[[k, 4]]]] = -1,

{k, 1, 145}]

5. The sign pattern ZCS2
is the sign pattern of A (broken into two halves of 85 rows each):
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+ 0 − 0 0 0 0 0 + 0 0
+ 0 − 0 0 0 0 0 0 − 0
+ 0 0 + 0 0 − 0 0 0 0
+ 0 0 + 0 0 0 − 0 0 0
+ 0 0 0 0 − 0 0 0 0 +
+ 0 0 0 0 0 − + 0 0 0
+ 0 0 0 0 0 0 0 − − 0
0 + 0 − 0 − 0 0 0 0 0
0 + 0 − 0 0 0 0 0 − 0
0 + 0 0 − 0 0 − 0 0 0
0 + 0 0 − 0 0 0 − 0 0
0 + 0 0 0 − 0 0 0 + 0
0 + 0 0 0 0 − 0 0 0 −
0 + 0 0 0 0 0 − + 0 0
0 0 + 0 + − 0 0 0 0 0
0 0 + 0 + 0 − 0 0 0 0
0 0 + 0 0 + − 0 0 0 0
0 0 + 0 0 0 0 − 0 0 +
0 0 + 0 0 0 0 0 − − 0
0 0 0 + 0 − 0 0 0 + 0
0 0 0 + 0 0 + − 0 0 0
0 0 0 + 0 0 0 0 − 0 −
0 0 0 0 + − + 0 0 0 0
0 0 0 0 + 0 0 − + 0 0
0 0 0 0 + 0 0 0 0 − −
− + + − 0 0 0 0 0 0 0
+ + − 0 − 0 0 0 0 0 0
+ + − 0 0 − 0 0 0 0 0
+ + + 0 0 0 − 0 0 0 0
− + + 0 0 0 0 − 0 0 0
− + − 0 0 0 0 0 0 0 −
− + 0 − − 0 0 0 0 0 0
+ − 0 + 0 0 0 0 − 0 0
− + 0 − 0 0 0 0 0 0 −
+ + 0 0 + − 0 0 0 0 0
+ + 0 0 − 0 − 0 0 0 0
+ − 0 0 + 0 0 0 0 − 0
− + 0 0 + 0 0 0 0 0 −
+ + 0 0 0 − − 0 0 0 0
+ + 0 0 0 − 0 − 0 0 0
+ + 0 0 0 − 0 0 − 0 0
− − 0 0 0 0 + 0 − 0 0
+ + 0 0 0 0 − 0 0 − 0
+ + 0 0 0 0 0 − 0 − 0
− + 0 0 0 0 0 − 0 0 −
− + 0 0 0 0 0 0 − 0 −
− + 0 0 0 0 0 0 0 + −
+ 0 − + − 0 0 0 0 0 0
+ 0 − + 0 − 0 0 0 0 0
+ 0 − + 0 0 0 0 0 0 −
− 0 + 0 + 0 0 − 0 0 0
− 0 + 0 + 0 0 0 0 0 −
− 0 + 0 0 + 0 − 0 0 0
− 0 − 0 0 0 + 0 0 0 −
+ 0 0 + + − 0 0 0 0 0
+ 0 0 + − 0 0 0 − 0 0
+ 0 0 − + 0 0 0 0 − 0
− 0 0 + + 0 0 0 0 0 −
+ 0 0 + 0 − 0 0 − 0 0
− 0 0 + 0 0 0 0 0 + −
− 0 0 0 − + 0 − 0 0 0
− 0 0 0 − + 0 0 − 0 0
+ 0 0 0 + − 0 0 0 − 0
− 0 0 0 − 0 + 0 − 0 0
+ 0 0 0 + 0 − 0 0 − 0
− 0 0 0 + 0 + 0 0 0 −
+ 0 0 0 + 0 0 − 0 − 0
− 0 0 0 + 0 0 + 0 0 −
− 0 0 0 + 0 0 0 + 0 −
− 0 0 0 0 − + 0 − 0 0
+ 0 0 0 0 + − 0 0 − 0
+ 0 0 0 0 − 0 + − 0 0
+ 0 0 0 0 + 0 − 0 − 0
− 0 0 0 0 0 + 0 − 0 −
− 0 0 0 0 0 + 0 0 + −
− 0 0 0 0 0 0 + − 0 −
− 0 0 0 0 0 0 + 0 + −
0 + − − − 0 0 0 0 0 0
0 + + − 0 0 − 0 0 0 0
0 + + + 0 0 0 − 0 0 0
0 − + + 0 0 0 0 − 0 0
0 + − + 0 0 0 0 0 0 −
0 − + 0 + 0 0 0 0 − 0
0 + − 0 − 0 0 0 0 0 −
0 + + 0 0 − 0 − 0 0 0
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0 + + 0 0 − 0 0 − 0 0
0 + − 0 0 − 0 0 0 0 −
0 + + 0 0 0 − − 0 0 0
0 + + 0 0 0 − 0 − 0 0
0 − − 0 0 0 + 0 0 − 0
0 + + 0 0 0 0 − 0 − 0
0 + − 0 0 0 0 0 + 0 −
0 + − 0 0 0 0 0 0 − −
0 + 0 − − 0 − 0 0 0 0
0 − 0 + + 0 0 0 0 0 −
0 − 0 + 0 0 + 0 − 0 0
0 + 0 + 0 0 0 − 0 0 −
0 + 0 0 + − 0 0 0 0 −
0 − 0 0 + 0 + 0 0 − 0
0 + 0 0 0 − + − 0 0 0
0 + 0 0 0 − + 0 − 0 0
0 + 0 0 0 − 0 − 0 0 −
0 + 0 0 0 − 0 0 − 0 −
0 + 0 0 0 0 + − 0 − 0
0 − 0 0 0 0 + 0 − − 0
0 + 0 0 0 0 0 − 0 − −
0 + 0 0 0 0 0 0 − − −
0 0 + + + 0 0 − 0 0 0
0 0 + + − 0 0 0 − 0 0
0 0 + − + 0 0 0 0 − 0
0 0 − + + 0 0 0 0 0 −
0 0 + + 0 + 0 − 0 0 0
0 0 + + 0 − 0 0 − 0 0
0 0 − + 0 + 0 0 0 0 −
0 0 + + 0 0 − 0 − 0 0
0 0 − − 0 0 + 0 0 − 0
0 0 − + 0 0 + 0 0 0 −
0 0 + + 0 0 0 − − 0 0
0 0 − − 0 0 0 + 0 − 0
0 0 − + 0 0 0 0 0 + −
0 0 + 0 + 0 0 − 0 − 0
0 0 − 0 + 0 0 0 + 0 −
0 0 + 0 0 − 0 + − 0 0
0 0 + 0 0 + 0 − 0 − 0
0 0 − 0 0 + 0 0 + 0 −
0 0 − 0 0 + 0 0 0 − −
0 0 + 0 0 0 − + − 0 0
0 0 − 0 0 0 + − 0 − 0
0 0 − 0 0 0 + 0 + 0 −
0 0 − 0 0 0 + 0 0 − −
0 0 0 + − + 0 − 0 0 0
0 0 0 + − + 0 0 − 0 0
0 0 0 + + − 0 0 0 0 −
0 0 0 + − 0 + 0 − 0 0
0 0 0 − + 0 + 0 0 − 0
0 0 0 + + 0 − 0 0 0 −
0 0 0 − + 0 0 + 0 − 0
0 0 0 + + 0 0 − 0 0 −
0 0 0 − + 0 0 0 + − 0
0 0 0 + 0 − + 0 − 0 0
0 0 0 + 0 + − 0 0 0 −
0 0 0 − 0 − 0 + − 0 0
0 0 0 + 0 + 0 − 0 0 −
0 0 0 − 0 0 + 0 − − 0
0 0 0 + 0 0 − 0 0 + −
0 0 0 − 0 0 0 + − − 0
0 0 0 + 0 0 0 − 0 + −
0 0 0 0 − + 0 − 0 − 0
0 0 0 0 + − 0 + 0 0 −
0 0 0 0 − + 0 0 − − 0
0 0 0 0 + − 0 0 + 0 −
0 0 0 0 + 0 + − 0 − 0
0 0 0 0 + 0 − + 0 0 −
0 0 0 0 − 0 + 0 − − 0
0 0 0 0 + 0 − 0 + 0 −
0 0 0 0 0 − + + − 0 0
0 0 0 0 0 + + − 0 − 0
0 0 0 0 0 + − + 0 0 −
0 0 0 0 0 − + 0 − − 0
0 0 0 0 0 + − 0 + 0 −
0 0 0 0 0 + − 0 0 − −
0 0 0 0 0 + 0 − + − 0
0 0 0 0 0 − 0 + − 0 −
0 0 0 0 0 + 0 − 0 − −
0 0 0 0 0 + 0 0 − − −
0 0 0 0 0 0 + − − − 0
0 0 0 0 0 0 − + − 0 −
0 0 0 0 0 0 − + 0 + −
0 0 0 0 0 0 + 0 − − −
0 0 0 0 0 0 0 + − − −
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