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Abstract

For a given undirected graph G, the minimum rank of G is defined to be the
smallest possible rank over all real symmetric matrices A whose (i, j)th entry
is nonzero whenever i 6= j and {i, j} is an edge in G. The path cover number
of G is the minimum number of vertex-disjoint paths occurring as induced sub-
graphs of G that cover all the vertices of G. For trees, the relationship between
minimum rank and path cover number is completely understood. However, for
non-trees only sporadic results are known. We derive formulae for the minimum
rank and path cover number for graphs obtained from edge-sums, and formulae
for minimum rank of vertex sums of graphs. In addition we examine previously
identified special types of vertices and attempt to unify the theory behind them.

1 Introduction

Spectral graph theory is the study of the eigenvalues of various matrices
associated with graphs. In recent years there has been a great deal of interest
in a Symmetric Inverse Eigenvalue Problem, concerning the study of possible
eigenvalues of a real symmetric matrix whose nonzero entries are described by
a given undirected graph.

All matrices discussed in this paper are real and symmetric. The graph G(A)
of an n×n matrix A has {1, ..., n} as vertices, and as edges the unordered pairs
{i, j} such that aij 6= 0 with i 6= j. Graphs G of the form G = G(A) do not have
loops or multiple edges, and the diagonal of A is ignored in the determination
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of G(A). The aforementioned symmetric inverse eigenvalue problem asks: given
a graph G, what eigenvalues are possible for a real symmetric matrix A with
G(A) = G? This is a very difficult problem, and complete solutions have been
obtained only in special cases. Most of the work has focused on trees; our
interest lies in extending some results to graphs in general.

For the matrix A, σ(A) denotes the spectrum of A and for λ ∈ σ(A),
multA(λ) denotes the multiplicity of λ. Define the following parameters of a
graph G: mr(G) = min{rankA : G(A) = G}; M(G) = max{multA(λ) : λ ∈
σ(A) and G(A) = G}; P (G) is the path cover number, namely, the minimum
number of vertex disjoint paths, occurring as induced subgraphs of G, that cover
all the vertices of G; ∆(G) is the maximum of p− q such that the deletion of q
vertices from G leaves p paths.

If we denote the order of G by |G|, then it is easy to see that |G| = M(G) +
mr(G), as noted in [BL]. This relation has been exploited to obtain results
about the maximum possible multiplicity from results on the minimum rank,
and also played a role in Johnson and Leal Duarte’s result that, for trees, the
three parameters M(T ), P (T ) and ∆(T ) are equal [JLD99]. It follows from the
proof given in [JLD99] that ∆(G) 6 M(G) for any graph. In this paper we
show that for arbitrary graphs, ∆(G) 6 P (G) and give examples showing both
M(G) < P (G) and P (G) < M(G) are possible (see Section 3). These results
are obtained through a result allowing computation of the minimum rank of an
edge-sum from the minimum rank of each of the pieces (see Section 2).

Let G = (V,E) be a graph and let v ∈ V , e ∈ E. We denote by G − e the
subgraph of G obtained by deleting edge e. We denote by G−v the subgraph of
G obtained by deleting v and all edges incident with v. Any induced subgraph
of G is obtained by deleting some subset of vertices. For a matrix A with
G(A) = G, the matrix A(v) will denote the principal submatrix of A obtained
by deleting row and column v. In particular G(A(v)) = G − v. For the sake
of completeness, in Section 5 we discuss the behavior of the parameters M , P ,
and ∆ under induced subgraphs.

In this paper we make use of the following results. It is well-known that
mr(G) = 1 if and only if G is Kn, the complete graph on n vertices. Fiedler [F]
established that mr(G) = n − 1 if and only if G is Pn, the path on n vertices.
Barrett and Loewy [BL] established that mr(G) = 2 if and only if G is not
Kn, and does not contain as an induced subgraph any of the four “forbidden
subgraphs”: P4, the complete tripartite graph K3,3,3, and the two graphs shown
in Figure 1 on the following page.

2 Vertex-sums of Graphs

We start by introducing a notion which will play a central role in all the
following discussion.

Definition 2.1 Let v a vertex of a graph G. The rank-spread of G at v is
defined as rv(G) = mr(G)−mr(G− v).
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Figure 1: Two forbidden subgraphs
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We then have 0 6 rv(G) 6 2 (see, for example, [N]). In the following lemma
we are interested in the matrices satisfying all of the following conditions:

A =

[
a bT

b A′

]
; G(A) = G; b ∈ R(A′), (1)

where R(·) denotes the range of a matrix.

Lemma 2.2 Let G be a graph, and v a vertex in G. If we assume v = 1, then

i. rv(G) = 0 if and only if min{rankA′ : A satisfies (1)} = mr(G− v);

ii. rv(G) = 1 if and only if min{rankA′ : A satisfies (1)} = mr(G− v) + 1;

iii. rv(G) = 2 otherwise.

Proof

i. Let A satisfy (1) with rankA′ = mr(G − v). Then Ã =

[
bTA′†b bT

b A′

]
satisfies (1) as well (A† denotes the Moore-Penrose pseudoinverse). Now
mr(G) 6 rank Ã = rankA′ = mr(G − v), so that rv(G) = 0. Conversely,
if rv(G) = 0, any matrix A with graph G and rank equal to mr(G) will
satisfy (1) with rankA′ = mr(G− v).

ii. Let A satisfy (1) with rankA′ = mr(G−v)+1. With regard to the matrix
Ã defined in (i.), we now have mr(G) 6 rank Ã = rankA′ = mr(G− v) +
1, that is, rv(G) 6 1. Hence rv(G) = 1, since 0 is excluded by (i.).
Conversely, if rv(G) = 1, by [N, Prop. 2.2] any matrix with graph G and
rank equal to mr(G) will satisfy (1) with rankA′ = rankA = mr(G−v)+1.

iii. Since rv(G) 6 2, the claim follows from (i.) and (ii.).
�

Let G1, . . . , Gh be disjoint graphs. For each i, we select a vertex vi ∈ V (Gi)
and join all Gi’s by identifying all vi’s as a unique vertex v. The resulting graph
is called the vertex-sum at v of the graphs G1, . . . , Gh.
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Theorem 2.3 Let G be vertex-sum at v of graphs G1, . . . , Gh. Then

rv(G) = min

{
h∑
i=1

rv(Gi), 2

}
, (2)

that is, mr(G) =
∑h

1 mr(Gi − v) + min
{∑h

1 rv(Gi), 2
}

.

Proof By assuming v = 1, a matrix with graph G can be written in the form

A =

[
a bT

b A′

]
=


a bT1 · · · bTh
b1 A′1 · · · O
...

...
. . .

...
bh O · · · A′h

 , (3)

where G(A′i) = Gi − v, i = 1, . . . , h. We will prove that rv(G) = 0 if and only
if
∑h

1 rv(Gi) = 0, and that rv(G) = 1 if and only if
∑h

1 rv(Gi) = 1. Otherwise,
since rv(G) 6 2, (2) follows.

Case I: let rv(G) = 0. By Lemma 2.2, there exists a matrix A of the
form (3) such that b ∈ R(A′), and rankA′ = mr(G − v) =

∑h
1 mr(Gi − v).

Therefore, for each i, bi ∈ R(A′i) and rankA′i = mr(Gi − v). Thus, applying
Lemma 2.2, we have rv(Gi) = 0 for each i, hence,

∑h
1 rv(Gi) = 0. Conversely,

if rv(Gi) = 0 for each i, we can find matrices Ai =
[
ai
bi

bTi
A′i

]
satisfying (1) and

rankA′i = mr(Gi − v). We can then derive a matrix A as in (3), where a can
be any real number. Clearly b ∈ R(A′) and rankA′ = mr(G − v). Therefore,
again by Lemma 2.2, we conclude rv(G) = 0.

Case II: let rv(G) = 1. By case I, we then have
∑h

1 rv(Gi) > 1. We now
prove

∑h
1 rv(Gi) 6 1. Using Lemma 2.2, we can derive a matrix A in the form

(3) with b ∈ R(A′) and rankA′ =
∑h

1 mr(Gi − v) + 1. Therefore, there exists
j ∈ {1, . . . , h} such that rankA′j = mr(Gj−v)+1 and rankA′i = mr(Gi−v) for
i 6= j. Thus,

∑h
1 rv(Gi) 6 1. Conversely, if

∑h
1 rv(Gi) = 1, it suffices to modify

slightly the proof of case I to obtain rv(G) = 1. �

The next result is just a recasting of a special case of Theorem 2.3, which
we state for completeness.

Corollary 2.4 Let G be vertex-sum at v of graphs G1 and G2. Then

mr(G1) + mr(G2)− 2 6 mr(G) 6 mr(G1) + mr(G2),

and both extremes are attainable.

For attainment, join two stars at their centers (left-inequality) or join two
paths at one of their ends (right-inequality).

By virtue of Theorem 2.3, we can determine the effect on the minimal rank
by appending leaves (i.e., vertices of degree one) to a given graph.
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Lemma 2.5 Let G1 be a graph, and consider the graph G obtained by appending
l leaves on a vertex v of G1. Then

i. if l = 1 and rv(G1) = 0, then rv(G) = 1 and mr(G) = mr(G1) + 1;

ii. otherwise, rv(G) = 2 and mr(G) = mr(G1) + 2− rv(G1).

Proof Let us denote the leaves by the graphs G2, . . . , Gl+1. Note that, for
each i = 2, . . . , l + 1, rv(Gi) = 1, while mr(Gi − v) = 0. Therefore, if l = 1
and rv(G1) = 0, we have

∑2
1 rv(Gi) = 1. Hence, by (2), rv(G) = 1, that is,

mr(G) =
∑2

1 mr(Gi − v) + 1 = mr(G1 − v) + 1 = mr(G1) + 1, since rv(G1) = 0.
On the other hand, if either l > 1 or rv(G1) > 0, by (2) we have rv(G) = 2,

that is, mr(G) =
∑l+1

1 mr(Gi− v) + 2 = mr(G1− v) + 2 = mr(G) + 2− rv(G1).
�

We now turn our attention to edge-sums of graphs and use the above analysis
pertaining to vertex-sums to obtain analogous results for edge-sums. Let G1

and G2 be disjoint undirected graphs, and let v1 and v2 be vertices of G1 and
G2 respectively. If we connect G1 and G2 by adding the edge e = {v1, v2},
the resulting graph G is called edge-sum of G1 and G2, and is denoted by
G = G1+

e
G2.

Theorem 2.6 Let G = G1+
e
G2, with e = {v1, v2}. Then

mr(G) =

{
mr(G1) + mr(G2) if rvi(Gi) = 2 for at least one i;
mr(G1) + mr(G2) + 1 otherwise.

Proof Denote by H the graph obtained by appending the edge {v1, v2} to G1.
Let us assume rv1(G1) = 2, so that, by Lemma 2.5, we have rv1(H) = 2 and so
mr(H) = mr(G1). We now consider G as vertex sum at v2 of H and G2. Note
that rv2(H) = mr(H)−mr(G1) = 0, so, with regard to (2), we have

rv2(G) = min{rv2(H) + rv2(G2), 2} = rv2(G2)
= mr(G2)−mr(G2 − v2). (4)

On the other hand,

rv2(G) = mr(G)−mr(G− v2) = mr(G)−mr(G1)−mr(G2 − v2). (5)

By comparing (4) and (5) we obtain mr(G) = mr(G1) + mr(G2).
Let now consider the case rvi(Gi) 6 1 for each i. By Lemma 2.5 we have in

any case mr(H) > mr(G1), that is, rv2(H) > 0. Thus, in this case

rv2(G) = min{rv2(H) + rv2(G2), 2}
> rv2(G2) = mr(G2)−mr(G2 − v2), (6)

since rv2(G2) 6 1. By comparing (6) and (5), we now have mr(G) > mr(G1) +
mr(G2). Finally, since mr(G) 6 mr(G1) + mr(G2) + 1 (cf. [N, Prop 2.1]), we
obtain the desired conclusion. �
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3 The Relationship between Maximum Multiplicity, Path Cover
Number and ∆

In [JLD99] Johnson and Leal Duarte showed that for trees, ∆(T ) = P (T ) =
M(T ). We consider the relationship between these parameters for graphs in
general. It is easy to find an example in which ∆(G) < P (G) < M(G), for
instance, W5, the wheel on five vertices, Figure 2, which has ∆(W5) = −1,
P (W5) = 2, and M(W5) = 3, since mr(W5) = 2 by [BL]. A larger discrepancy
between P and M may be obtained by considering Kn, the complete graph
on n vertices. If n is even then P (Kn) = n/2, but M(Kn) = n − 1 (because
mr(Kn) = 1).

Figure 2: W5, showing a minimal path cover
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The following question naturally arises: Is it true for any graph G that
∆(G) 6 P (G) 6 M(G)? The proof in [JLD99] establishes ∆(G) 6 M(G) for
any graph, since it utilizes interlacing inequalities and does not rely on G being
a tree. The next theorem establishes the first inequality.

Theorem 3.1 Let G be a graph.

i. If e is an edge of G, then ∆(G) 6 ∆(G− e);

ii. ∆(G) 6 P (G).

Proof

i. Recall that ∆(G) = max{p − q: there are q vertices of G whose deletion
leaves p paths}. In G choose a set Q of q vertices leaving p paths such
that p− q = ∆(G). If e is incident with a vertex in Q, then deletion of the
vertices in Q leaves the same p paths in G− e and thus (by maximality)
p − q 6 ∆(G − e). If e is not incident with a vertex in Q, then e is
in one of the paths and the removal of e creates an additional path, so
p+ 1− q 6 ∆(G− e). In either case, ∆(G) 6 ∆(G− e).

ii. Choose a minimal path cover Ψ for G. By i., ∆(G) 6 ∆(Ψ). Ψ is a disjoint
union of trees, so ∆(Ψ) = P (Ψ) = P (G), by choice of Ψ. �

The next result answers the remaining question in the negative, that is, we
exhibit graphs with P (G) > M(G). For any n > 3, the n-sun Hn is the corona

6



graph of an n-cycle, namely, the graph on 2n vertices obtained by appending a
leaf on each vertex of an n-cycle.

Figure 3: The n-sun Hn
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Proposition 3.2 Let Hn be the n-sun on 2n vertices. Then

i. P (Hn) = dn2 e, n > 3;

ii. mr(H3) = 4;

iii. mr(Hn) = 2n− bn2 c, n > 3.

In particular, if n > 3 is odd, P (Hn) > M(Hn).

Proof

i. Since Hn has exactly n leaves, and each path can cover at most two of
them, we have P (Hn) > dn2 e. A path cover of cardinality dn2 e is easily
obtained by connecting with a path pairs of adjacent leaves.

ii. Let G = H3 − (6) (see Figure 4), G′ = G − (3). Note that G′ = P3, so

Figure 4: The 3-sun H3
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that mr(G′) = 3. Moreover mr(G) = 3, since G contains P3 as an induced
subgraph, but G 6= P4. We are in a position to apply Theorem 2.6 and
obtain that mr(H3) = mr(G+

{3,6}
(6)) = mr(G) + 0 + 1 = 4.

iii. Let A be any matrix with G(A) = Hn, and consider the diagonal entries
corresponding to the n leaves. Suppose h of these entries are nonzero.
Therefore, by reordering and scaling rows and columns, we can assume
that A is in the form

A =


A11 A12 Ih O
A21 A22 O In−h

Ih O Ih O
O In−h O O

 . (7)

By performing suitable sums on rows and columns, it is easy to see that

rankA = rank Ih + 2 rank In−h + rank (A11 − Ih) (8)
> h+ 2(n− h) + mr(G(A11)). (9)

Case I: h = n. We have G(A11) = Cn, the n-cycle, hence mr(G(A11)) =
n− 2 [N], and by (9) we obtain rankA > 2n− 2 > 2n− bn2 c.
Case II: h < n. Here G(A11) is disjoint union of, say, k paths. So
mr(G(A11)) = h − k. By (9), rankA > 2n − k. Note that the k paths in
G(A11) are obtained by deleting exactly n − h vertices from the n-cycle.
Therefore k 6 n − h. This inequality, together with the obvious k 6 h,
yields k 6 bn2 c, and finally rankA > 2n− bn2 c.
A matrix with graph Hn and rank 2n− bn2 c is obtained by defining

A =

[
C +D In

In D

]
,

where D = diag(0, 1, 0, 1, . . .) and

C =



0 1 0 · · · 0 1

1 0 1
. . . 0

0 1 0
. . . . . .

...
...

. . . . . . . . . 1 0

0
. . . 1 0 1

1 0 · · · 0 1 0


.

By reordering the vertices and writing A as in (7), a simple check proves
that h = bn2 c and A11 = Ih. By (8) we now obtain rankA = bn2 c+2dn2 e =
2n− bn2 c.
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Although in general it is not difficult to find a graph, such as the wheel W5,
in which P (G) < M(G), we shall see that this requires adjacent cycles. In fact,
we will show that any graph built by edge-sums from graphs all of whose induced
subgraphs have P (G) > M(G) will also have this property. Define a graph to
be non-deficient if for all induced subgraphs H of G, mr(H) + P (H) > |H|, or
equivalently P (H) >M(H). A vertex v is a terminal vertex in G if v is the end
point of a path in some minimum path cover of G. We first obtain some bounds
on path cover number analogous to those established for minimum rank.

Lemma 3.3 For any vertex v of G, P (G)− 1 6 P (G− v) 6 P (G) + 1. If v is
terminal in G then P (G− v) 6 P (G).

Proof If there is a minimum path cover in which v is an endpoint then this
cover with v deleted provides a path cover with no more than P (G) paths, so
P (G− v) 6 P (G). Otherwise when this cover is considered in G− v, one path
will split into two and so P (G− v) 6 P (G) + 1.
For any minimum path cover of P (G − v) this path cover together with v is a
path cover of G, so P (G) 6 P (G− v) + 1. �

Example 3.4 Although the second statement in Lemma 3.3 guarantees that
deleting any terminal vertex implies P (G − v) 6 P (G), the converse is false,
as can be seen by considering vertex 5 in G = H5 − (10) (see Figure 5). The
paths (6, 1, 5, 4, 9) and (7, 2, 3, 8) are the only minimum path cover of G, so that
5 is not terminal. Moreover the paths (6, 1, 2, 7) and (8, 3, 4, 9) are (the only)
minimum path cover of G− (5). Thus, P (G− v) = P (G).

Figure 5: The graph G = H5 − (10)
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Lemma 3.5 Let G = G1+
e
G2 with e = {v1, v2}. Then

P (G) =

{
P (G1) + P (G2)− 1 if and only if vi is terminal in Gi, ∀i = 1, 2;
P (G1) + P (G2) otherwise.
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Proof The union of path covers for G1 and G2 is a path cover for G, so by
using minimal path covers for Gi, P (G) 6 P (G1) + P (G2).

Given a minimal path cover Ψ for G (so |Ψ| = P (G)), we obtain path covers
Ψi for Gi as pieces of this. Clearly the number of paths in the union of these
covers is either the same number of paths as the original or one more, that is,
P (G1) + P (G2) 6 |Ψ1|+ |Ψ2| 6 P (G) + 1.

If P (G1)+P (G2) = P (G)+1, then the edge e appeared in Ψ, so vi is terminal
in Ψi for both i = 1, 2. Since P (G1)+P (G2) 6 |Ψ1|+ |Ψ2| 6 P (G)+1, we have
P (G1) + P (G2) = |Ψ1| + |Ψ2| = P (G) + 1. Since |P (Gi)| 6 |Ψi|, for i = 1, 2,
necessarily |P (Gi)| = |Ψi|, that is, the covers Ψ1 and Ψ2 of G1 and G2 produced
from the cover Ψ of G must be minimal, and vi was the end point of a path
in Ψi. Thus P (G1) + P (G2) − 1 = P (G) implies vi is terminal in Gi for both
i = 1, 2.

If for both i = 1, 2 vi is terminal in Gi, then a path cover of size P (G1) +
P (G2)− 1 for G is obtained from minimal path covers for G1 and G2 in which
the vertices are terminal by joining the path ending in v1 to the path ending in
v2 by edge e, so in this case P (G) = P (G1) + P (G2)− 1. �

Theorem 3.6 Let G = G1+
e
G2 with e = {v1, v2}. If both G1 and G2 are non-

deficient then G is non-deficient. Thus, mr(G) + P (G) > |G|, or equivalently,
P (G) >M(G).

Proof Let H be an induced subgraph of G. Let Hi be the subgraph induced
by V (H) ∩ V (Gi). If for some i, vi is not in Hi then H is the disjoint union
of H1 and H2 and the result is clear. So assume vi in Hi for i = 1, 2, and so
H = H1+

e
H2. By Theorem 2.6, we have

case 1. mr(H) = mr(H1) + mr(H2) + 1 or

case 2. mr(H) = mr(H1) + mr(H2).

By Lemma 3.5, we have

case a. P (H) = P (H1) + P (H2) or

case b. P (H) = P (H1) + P (H2)− 1.

In case (1),

mr(H) + P (H) > mr(H1) + mr(H2) + 1 + P (H1) + P (H2)− 1
> |H1|+ |H2|
= |H|.

In case (a),

mr(H) + P (H) > mr(H1) + mr(H2) + P (H1) + P (H2)
> |H1|+ |H2|
= |H|.
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Finally suppose both case (2) and case (b) hold. We know from Theorem 2.6
that for some i (say i = 1), rv1(H1) = mr(H1) − mr(H1 − v1) = 2. From
Lemma 3.5, both v1 and v2 are terminal in H1 and H2, respectively. Then
by Lemma 3.3, P (H1 − v1) 6 P (H1). Since H1 is non-deficient, |H1| − 1 =
|H1− v1| 6 mr(H1− v1) +P (H1− v1) 6 mr(H1)− 2 +P (H1). Thus |H1|+ 1 6
mr(H1) + P (H1). Also, |H2| 6 mr(H2) + P (H2). Therefore, mr(H) + P (H) =
mr(H1)+mr(H2)+P (H1)+P (H2)−1 = mr(H1)+P (H1)+mr(H2)+P (H2)−1 >
|H1|+ 1 + |H2| − 1 = |H1|+ |H2| = |H|. �

For any tree, or more generally, forest, mr(T ) + P (T ) = |T | [JLD99], and
any proper induced subgraph of a forest is a forest, so a forest (or tree) is
non-deficient.

Example 3.7

i. For any cycle Cn, mr(Cn) + P (Cn) = n = |Cn|, because P (Cn) = 2 and
mr(Cn) = n− 2 [N].

ii. Let Cm,n, denote the double cycle which consists of one cycle of length m
and one cycle of length n sharing one common edge (see the graph on the
left in Figure 6). Then P (Cm,n) = 2 (use one end of the shared edge as a
path and all remaining vertices as a path), and mr(Cm,n) = n−2 as for the
cycle. Any proper connected induced subgraphH of Cm,n is a cycle with at
most two paths adjoined or is a tree. If H contains a cycle, then P (H) = 2,
while mr(H) 6 |H| − 2, since H is not a path. But H is non-deficient by
item (i.) above and Theorem 3.6, so mr(H) > |H| − P (H) = |H| − 2.

Figure 6: The double cycle C6,5 and induced subgraph
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4 “Special” Vertices

It is clear that vertices v having the property that mr(G) − mr(G − v) =
2, or equivalently, M(G − v) = M(G) + 1, have played a crucial role in this
discussion. We call such a v a rank-strong vertex in G. In much of the analysis
of multiplicities of eigenvalues of trees, various kinds of “special” vertices with
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this and additional properties have been exploited. One such kind of vertex is
what Nylen has called an appropriate vertex. A vertex v is appropriate in G
(in the sense of [N]) if its deletion from G has at least 2 components that are
paths joined at the end to the deleted vertex. Such vertices are exploited in [N]
to compute mr(T ) for T a tree. Although Nylen defined and used appropriate
vertices only for trees, in any graph G any appropriate vertex is a rank-strong
vertex (see Proposition 4.1). Wei and Weng [WW] call a vertex v of a tree T
typical if v has at least two neighbors of degree less than or equal to 2, and
use typical vertices to calculate mr(T ). As noted in [WW], every appropriate
vertex is typical but not vice versa. Although in any tree a typical vertex (in
the sense of [WW]) is a rank-strong vertex (see Corollary 4.3), this is not true in
general: consider an n-cycle, where every vertex is typical but not rank-strong.
Not every rank-strong vertex is typical, even in a tree (see Example 4.4). Before
justifying these remarks through a series of propositions, it is worth mentioning
that leaves are never rank-strong vertices, since, by appending a leaf to a graph,
the minimal rank cannot increase by more than one. On the other hand, if v
is rank-strong in a graph G1, then (Theorem 2.3) v remains rank-strong in any
graph obtained by doing a vertex-sum on v, i.e., for any graphs G2, . . . , Gh and
G such that G is vertex-sum at v of G1, . . . , Gh, v is rank-strong in G.

Proposition 4.1 Any appropriate vertex of a graph is rank-strong.

Proof G is vertex-sum of graphs G1, . . . , Gh, in which at least two components
are paths. Note that if v is an extreme vertex of a path P , then rv(P ) = 1. By
applying Theorem 2.3 we have rv(G) = 2. �

In order to obtain a similar result for typical vertices of a tree, we first notice
that, since, for a tree, P (T ) = M(T ), we have

Proposition 4.2 A vertex v in a tree T is rank-strong if and only if P (T−v) =
P (T ) + 1.

Corollary 4.3 Any typical vertex of a tree is rank-strong.

Proof By Proposition 4.2, it suffices to show that, in a tree, the removal of
a typical vertex v increases the path cover number. Let w1 and w2 be two low
degree neighbors of v guaranteed by the definition of typical, and let T −v have
components T1, T2, . . . , Tk. Since T is a tree, w1 and w2 must be in distinct
components, say T1 and T2. Moreover wi (i = 1, 2) must be terminal in Ti, and
since the union of minimal path covers of the Ti’s is a minimal path cover of
T − v, we can obtain a path cover for G with P (T − v)− 1 paths by joining the
path ending at w1 to v to the path ending at w2. Thus P (T ) 6 P (T − v) − 1
and equality follows from Lemma 3.3. �

Example 4.4 The converse of Corollary 4.3 is not true. Let T be the double-
path in Figure 7 on the next page. Vertex 6 is not a typical vertex. However 6
is a rank-strong vertex, since P (T ) = 2, P (T − 6) = 3.
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Figure 7: A tree with a rank-strong vertex that is not typical
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For a given matrix A and eigenvalue λ of A with multA(λ) > 1, we will call a
vertex v of G(A) a Parter-Wiener vertex for λ if 1) λ is an eigenvalue of at least
3 irreducible components of A(v) and 2) multA(v)(λ) = multA(λ) + 1. Such a
vertex v has been called a Parter vertex in [JLD02] and [JDSSW], and a Wiener
vertex in [BFgen] and [BFconj]. In [P] and [W] it is established implicitly that
if T = G(A) is a tree, then T must have a Parter-Wiener vertex for any multiple
eigenvalue λ of A. However, the n-cycle Cn has no Parter-Wiener vertices and
no rank-strong vertices even though there is a matrix A with G(A) = Cn having
an eigenvalue of multiplicity 2. Since, as noted in [JDSSW], for each vertex v of
a tree T , whose degree is larger than or equal to 3, it is possible to construct a
matrix A with v as Parter-Wiener vertex for an eigenvalue of A, we can easily
construct a Parter-Wiener vertex for a matrix A which is not a rank-strong
vertex for T = G(A). Consider, for instance, the tree shown in Figure 8. By
Proposition 4.2, vertex 10 is a not rank-strong vertex, but it has degree larger
than 3.

Figure 8: Vertex 10 is a not rank-strong vertex, but can be a Parter-Wiener
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However, by comparing the definitions of a rank-strong vertex and a Parter-
Wiener vertex, we have the following as an immediate consequence.

Proposition 4.5 Let G be a graph. If v is a Parter-Wiener vertex of a matrix
A and eigenvalue λ of A with multA(λ) = M(G), then v is a rank-strong vertex
of G.

So the idea of a rank-strong vertex appears to generalize (in a way that is
useful to the study of mr(G)) the ideas of an appropriate vertex, a typical vertex
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in a tree, and a Parter-Wiener vertex for an eigenvalue of maximum multiplicity.

5 Induced Subgraphs

A useful property of minimal rank is that it behaves monotonically on in-
duced subgraphs, that is, ifH is an induced subgraph ofG then mr(H) 6 mr(G).
However, that is not true for the other parameters we have discussed, as the
following example shows.

Example 5.1 Let F be the first graph shown in Figure 9. Then mr(F ) = 4
because F is the edge-sum of the dart D and vertex 6. Further, mr(D) = 3 by
[BL], vertex 5 is not rank-strong in D, and vertex 6 is a leaf. Thus M(F ) = 2.
Finally, a simple check shows that P (F ) = 2 and ∆(F ) = 2. On the other
hand, consider the subgraph K1,4 of F induced by 2, 3, 4, 5, 6. Since K1,4 is a
star, mr(K1,4) = 2. Thus M(K1,4) = 3 > 2 = M(F ). Since K1,4 is a tree,
M(K1,4) = P (K1,4) = ∆(K1,4) and so P (K1,4) > P (F ) and ∆(K1,4) > ∆(F ).

Figure 9: The graph F and induced subgraphs D and K1,4
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In the case of a tree, ∆, P and M do behave monotonically on connected in-
duced subgraphs, since the path cover number of a connected induced subgraph
is always smaller than or equal to the path cover number of the whole graph.
We summarize this fact as follows.

Proposition 5.2 If T is a tree and H is a connected induced subgraph of T
then P (H) 6 P (T ). Therefore M(H) 6M(T ), and ∆(H) 6 ∆(T ).

Note that the statement of Proposition 5.2 can be false if the requirement
that H be connected is removed.
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