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Abstract
Discharging arguments demonstrate a connection between local structure and global averages. This

makes it an effective tool for proving lower bounds on the density of special sets in infinite grids. How-
ever, the minimum density of an identifying code in the hexagonal grid remains open, with an upper
bound of 3

7 ≈ 0.428571 and a lower bound of 5
12 ≈ 0.416666. We present a new framework for pro-

ducing discharging arguments using an algorithm. This algorithm replaces the lengthy case analysis
of human-written discharging arguments with a linear program that produces the best possible lower
bound using the specified set of discharging rules. We use this framework to present a lower bound of
23
55 ≈ 0.41818 on the density of an identifying code in the hexagonal grid, and also find several sharp
lower bounds for variations on identifying codes in the hexagonal, square, triangular, and pentagonal
grids. We also present a new method to find matching upper bounds.

∗Pages 1-10 of this PDF contain the extended abstract, with some figures, tables, and proofs appearing in appendices (pp.
13-16).
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1 Introduction
The discharging method is a well-known technique in discrete mathematics, especially due to its use in the
computer-assisted proofs of the Four Color Theorem [1,2,30]. Since that first incredible achievement, almost
all other discharging proofs have been verified manually. Applications of discharging include coloring planar
graphs [6], density problems in grids [7,8], and structural problems on circulant graphs [11]. Despite its wide
use, producing an effective discharging argument is very challenging and the proofs become complicated by
a lengthy case analysis. We present an algorithmic method for producing discharging arguments and apply
this method to prove lower bounds on the density of sets in infinite grids.

A plane grid is an infinite graph embedded in the plane. We will consider four plane grids: the hexag-
onal, the square, triangular, and pentagonal grids, as shown in Figure 1. These grids model the structure
of a wireless sensor network where the nodes are placed in a rigid lattice, as would be typical for use in a
field for drought monitoring [9]. Due the low cost of wireless sensor nodes, these networks can be so large
that the boundary of the network is a small portion of the entire network, so using an infinite grid is an ef-
fective way to approximate the network. Karpovsky, Chakrabarty, and Levitin [21] considered the problem
of detecting faults in such a network and defined an identifying code to be a set X of vertices in the grid
where the intersection of X with the closed neighborhood of each vertex is distinct. If N(v) is the set of
vertices adjacent to v, then the closed neighborhood N [v] is the set N(v) ∪ {v}. Thus an identifying code
X in a grid G satisfies N [v] ∩X 6= ∅ for all v ∈ V (G) and N [v] ∩X 6= N [u] ∩X for all distinct vertices
u, v ∈ V (G).

An identifying code exists in a graph G if and only if there are no twins (distinct vertices u, v where
N [u] = N [v]) since using the entire vertex set can identify all vertices. The interesting problem is to
determine the smallest identifying code in G, to minimize the cost of placing fault-detection devices on the
nodes representing elements of the code.

In an infinite grid, any identifying code will be infinite, so we need a notion of density instead of size.
For a vertex v, let Br(v) be the set of vertices within distance r of v in G. Given a vertex v ∈ V (G), The
density of a set X ⊆ V (G), denoted δ(X; v), is defined as a limit of the proportion of elements of X in
the ball of radius r, as r grows: δ(X; v) = lim supr→∞

|Br(v)∩X|
|Br(v)| . In the grids we consider, the vertex v is

irrelevant and we use δ(X) in place of δ(X; v).
Cohen et al. [5] demonstrated an identifying code in the hexagonal grid of density 3

7 , and Cukierman
and Yu [8] found several other constructions of this density. However, lower bounds on the optimal density
have not reached this upper bound, despite several attempts [5,7,8,21], with the most recent lower bound of
5
12 by Cukierman and Yu [8].

Theorem 1. If X is an identifying code in the hexagonal grid, then δ(X) ≥ 23
55 = 0.418.

We prove Theorem 1 using a new computer-automated method for constructing discharging arguments.

(a) Hexagonal Grid (b) Square Grid (c) Triangular Grid (d) Pentagonal Grid

Figure 1: Examples of plane grids.
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Due to the generality of the method and the modular nature of the implementation, the method also demon-
strates lower bounds for other grids and for other variants on identifying codes. Thus, several sharp lower
bounds are proven for these variants in the hexagonal, square, and triangular grids, which were major theo-
rems of previous work [3, 16, 21, 22, 31, 33].

Our main contribution is the development of this new computational approach to producing discharging
arguments. In Section 3, we discuss the structure of our discharging arguments. A recent survey by Cranston
and West [6] includes a more general perspective, but focuses mostly on coloring planar graphs. Briefly,
discharging arguments all feature three main steps: (1) assigning initial charge, (2) distributing charge ac-
cording to certain discharging rules, and (3) verifying that all objects have a certain amount of charge. The
most novel contribution of this new framework is that steps (2) and (3) are done in opposite order. By us-
ing a combinatorial generation algorithm, we enumerate every possible way that the discharging rules can
interact on a single object and create a linear program based on those interactions. Every feasible solution
corresponds to a correct discharging argument, and an optimal solution provides the largest lower bound
possible using that set of rules. This pairing of combinatorial generation and linear programming is similar
to the use of generating and solving a semidefinite program in Razborov’s flag algebra method [27], which
has gained significant attention in recent years (see Razborov’s survey [28]).

The purpose of this extended abstract is to demonstrate how a custom computer algorithm can produce
a discharging argument using minimal human interaction. We name our method ADAGE for “Automated
Discharging Arguments using GEneration,” and a specific proof using the framework is an adage. While an
adage is a short saying that conveys a general truth, an adage proof has a very short description while the
computer handles the significant case analysis. In Section 2 we discuss the important properties of the plane
grids in more detail, followed by a definition of a configuration and forbidden configuration. In Section 3
we set up the discharging argument, demonstrate how it is linked to the density of a set X , and discuss the
structure of discharging rules. The most crucial step is discussed in Section 4, where a linear program is built
to satisfy the assertions of the discharging argument. Section 5 defines several variations on an identifying
code, and the results on these variations are listed in Table 1. In Section 6, we use the resulting discharging
arguments to search for sets whose density matches the lower bound presented by the discharging argument.
Using this technique, we find matching examples for some problems. Appendices ?? and B list several
options for possible discharging rules in the three grids and the lower bounds demonstrated by the adage
proofs using those rules.

2 Grids, Density, and Configurations
We shall use standard graph theory terminology (see West [36]) to treat a grid G as an infinite plane graph
with vertex set V (G), edge set E(G), and face set F (G).

The grids G have an automorphism group as graphs, but we will restrict the automorphisms to be affine
linear maps on the plane with determinant 1. Specifically, we allow rigid motions that are translations and
rotations, but do not allow reflection (as such maps would have determinant −1). We make this restriction
based on intuition since previous discharging arguments in grids have made use of distinguishing between
clockwise and counter-clockwise arrangements, which would be lost if we allowed reflection. Under these
automorphisms, all four grids are face-transitive, and all but the pentagonal grid are vertex-transitive. If
we did not allow rotation, then the hexagonal grid would not be vertex-transitive and the triangular and
pentagonal grids would not be face-transitive.

For a vertex v ∈ V (G) and an integer r ≥ 0, the ball of radius r around v is the set of vertices within
distance r of v and is denoted by Br(v). The faces within distance r of v is the set of faces incident to
vertices in Br−1(v) and is denoted by Fr(v). For a face f ∈ F (G), define Br(f) to be the vertices v where
f ∈ Br(v) and Fr(f) to be the faces incident to vertices in Br−1(f).
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Figure 2: Forbidden configurations for identifying codes in the hexagonal grid.
Black vertices are elements of S1 and white vertices are not elements of S0.

A grid is amenable if the maximum degree of a vertex in G is finite, the maximum length of a face in
G is finite, and limr→∞

|Br+d(v)\Br(v)|
|Br(v)| = 0 for all finite values d ≥ 0. Amenable grids have the property

that the boundary of a ball is a vanishing proportion of the volume of the ball as the radius of the ball grows.
Using this basic property, it is not difficult to make the following observation.

Observation 2. Let G be an amenable plane grid. Then, for u, v ∈ V (G), limr→∞
|Br(u)∩Br(v)|
|Br(u)∪Br(v)| = 1, and

hence for any set X ⊆ V (G),

δ(X,u) = lim sup
r→∞

|Br(u) ∩X|
|Br(u)|

= lim sup
r→∞

|Br(v) ∩X|
|Br(v)|

= δ(X, v).

By this observation, we can define one vertex in V (G) as the “zero vertex,” denoted by v0, and define
the density of a set X ⊆ V (G) to be the limit δ(X) = lim supr→∞

|Br(v0)∩X|
|Br(v0)| . We also define one face in

F (G) as the “zero face” denoted by f0.
A configuration is a tuple (V, S0, S1, F ) where V is a finite set of vertices in V (G), S0 and S1 are

disjoint subsets of V , and F is a finite set of faces in F (G). We call S1 the elements and S0 the nonelements.
While we require that S0 ∩ S1 = ∅, we do not require that S0 ∪ S1 = V . Vertices in V \ (S0 ∪ S1) are
considered undetermined vertices. Frequently, we will denote a configuration by C and refer to the entries
of the tuple (V, S0, S1, F ) by V (C), S0(C), S1(C), and F (C). The automorphism group of G naturally
acts on configurations to produce a notion of isomorphism between configurations.

Such a configuration C represents a finite induced subgraph of the gridG and its planar dualG∗, as well
as some information about X on that induced subgraph. Specifically, a configuration C is embedded in X
if S1(C) ⊆ X , and S0(C) ⊆ V (G) \X . Further, C is embeddable in X if there exists a configuration C ′

isomorphic to C such that C ′ is embedded in X .
Many families of subsets of V (G), such as identifying codes, can be defined in terms of forbidden

configurations. Given a collection F = {C1, . . . , Ck} of configurations, the family forb(F) consists of sets
X ⊂ V (G) where for every Ci ∈ F , the configuration Ci is not embeddable in the set X . For a single
configuration C, we use forb(C) to denote forb({C}).

For example, a dominating set is a set X ⊆ V (G) such that N [v] ∩X 6= ∅ for all vertices v ∈ V (G).
If v ∈ V (G) and C is the configuration with V (C) = S0(C) = N [v], then forb(C) is the family of
dominating sets in G. Observe that for the family F of configurations in Figure 2, forb(F) is the family of
identifying codes in the hexagonal grid.

For a family F = {C1, . . . , Ck} of forbidden configurations and a configuration C where S0(C) =
S1(C) = ∅, we say that a configuration C ′ is an F-realization of C if V (C ′) = V (C), S0(C ′) ∪ S1(C ′) =
V (C ′), and C ′ does not contain any configuration Ci ∈ F . It is not difficult to generate all F-realizations of
a configurationC up to isomorphism using standard techniques. IfF = ∅, then there are 2|V (C)| realizations
of C, and possibly fewer when F 6= ∅.

We will use this method of generating F-realizations of a configuration C to examine all cases of how
an embedding of C in the grid G can intersect a set X . But first, we must discuss the structure of our
discharging argument.
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3 Charge Assignment and Discharging Rules
For our discharging argument, we will consider vertices and faces of G to be chargeable objects in that we
will associate them with a numerical value, called a charge. We assign a charge function µ : V (G)→ R on
the vertices of G and a charge function ν : F (G) → R on the faces of G. These functions are based on the

positions of the elements in a set X ⊆ V (G): for every vertex v ∈ V (G), µ(v) =

{
1 v ∈ X,
0 v /∈ X

, and for

every face f ∈ F (G), let ν(f) = 0. Observe that
∑

v∈Br(v0)
µ(v) +

∑
f∈Fr(v0)

ν(f) = |X ∩ Br(v0)| and
hence

δ(X) = lim sup
r→∞

|X ∩Br(v0)|
|Br(v0)|

= lim sup
r→∞

∑
v∈Br(v0)

µ(v) +
∑

f∈Fr(v0)
ν(f)

|Br(v0)|
.

A discharging function is a functionDX : (V (G) ∪ F (G))×(V (G) ∪ F (G))→ R whereDX(x, y) =
−DX(y, x) for all x, y ∈ V (G) ∪ F (G). Specifically, we can say that for two chargeable objects x, y ∈
V (G) ∪ F (G), the value DX(x, y) is the amount of charge to exchange from x to y. Given a discharging
function DX , we define the resulting charge functions µ′ : V (G)→ R and ν ′ : F (G)→ R as follows:

µ′(v) = µ(v) +
∑

u∈V (G)

DX(u, v) +
∑

g∈F (G)

DX(g, v).

ν ′(f) = ν(f) +
∑

u∈V (G)

DX(u, f) +
∑

g∈F (G)

DX(g, f).

For values c, d > 0, we say that DX is (c, d)-local if |DX(x, y)| ≤ c always, and DX(x, y) = 0
whenever the distance between x and y in G exceeds d. If a discharging function DX is (c, d)-local and
the grid is amenable, then the change in the total charge within the ball is negligible compared to the total
charge of the ball.

Our main assertion for a “good” discharging function is that the resulting charge functions satisfy
µ′(v) ≥ w and ν ′(f) ≥ 0 for all vertices v ∈ V (G) and faces f ∈ F (G). Roughly, this means that
the initial charge on the vertices was “spread out” evenly so that every vertex has charge at least w, and the
faces did not contribute any positive charge to the vertices and instead were simply “messengers” of charge.
In the hexagonal grid, passing charge between vertices and faces can be particularly effective, since a face
is incident to three antipodal pairs of vertices.

We make this assertion of a good discharging function concrete in the following theorem.

Theorem 3. Let G be an amenable grid. Let X ⊆ V (G), c, d, w ≥ 0, and let DX be a (c, d)-local
discharging function. Define the charge functions µ, µ′, ν, ν ′ by the discharging process using X and DX .
If µ′(v) ≥ w for all v ∈ V (G) and ν ′(f) ≥ 0 for all f ∈ F (G), then δ(X) ≥ w.

This theorem follows from basic limit computations. A proof is included in the appendix.
Theorem 3 demonstrates that (c, d)-local discharging functions provide a way to bound the density of

a set X . We consider µ′(v) ≥ w and ν ′(f) ≥ 0 to be postconditions for the discharging process (where
the initial charge values form preconditions). However, as defined, the function DX depends on the entire
(possibly infinite) set X . This is not an effective strategy for us to prove anything about a discharging
function. In order to build effective discharging functions, we will assemble one using discharging rules.

Informally, a discharging rule is a way to examine the local situation around a chargeable object, and
then decide to exchange a certain amount of charge among nearby chargeable objects. Such a rule could, for
instance, consider which elements in B2(v) are in X , and use that information to exchange charge between
v and the vertices adjacent to v, or between v and the faces incident to v. If the amount of charge exchanged
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depends only on the isomorphism class of the configuration (B2(v), B2(v)\X,B2(v)∩X,F1(v)), then this
rule has a finite description, even though it is applied an infinite number of times. When several discharging
rules are applied simultaneously, the discharging function DX is defined by collecting all of the charge
exchanges from all instances of the discharging rules.

Formally, a discharging rule is a tupleR = (C, z, y1, . . . , yt, σ) whereC is a configuration, z, y1, . . . , yt
are chargeable objects in C, and σ is a function σ : {0, 1}V (C) × {y1, . . . , yt} → R. We will consider the
first parameter of σ to be the incidence vector corresponding to the set X ∩ V (C). Thus σ(X ∩ V (C), yi)
determines how much charge to exchange from yi to z, given the realization of C. For an embedding π
of C into G, the rule considers π−1(X) ∩ V (C) and the function σ defines that some amount of charge is
exchanged from each π(yi) to π(z). Thus, the rule defines a discharging function DR

X as

DR
X(a, b) =

∑
π : π(z) = b
i : π(yi) = a

σ(π−1(X) ∩ V (C), yi)−
∑

π : π(z) = a
i : π(yi) = b

σ(π−1(X) ∩ V (C), yi).

The above definition states that the amount of charge sent from a to b is the combination of the charge sent
from a to b via all embeddings of the rule where π(z) = b and π(yi) = a for some i, minus the charge sent
from b to a via all embeddings of the rule where π(z) = a and π(yi) = b for some i.

If R1, . . . , Rm is a list of rules, then the discharging function DX resulting from using these rules
simultaneously is defined as DX(a, b) =

∑m
i=1D

Ri
X (a, b).

We can very quickly describe the configuration C and chargeable objects z, y1, . . . , yt of a discharging
rule. The function σ is more complicated, and in fact we do not specify it at all. For each possible element
of the domain of σ, we create a variable. In the next section, we will describe how to create a linear program
to assign value to these variables, thereby completely defining the discharging rules.

We now describe a few discharging rules that can be defined for any grid. The following list carefully
defines each rule, but these rules can be simply described for the hexagonal grid by Figure 3.

- DiRj : Let z be a vertex and y a vertex with d(z, y) = i. Consider the configuration Bj(z) ∩ Bj(y).
Use the information from X ∩Bj(z) ∩Bj(y) to specify how much charge is exchanged from y to z.

- Vi : Let z be a vertex, and consider the configuration onBi(z) andF1(z) and let {y1, . . . , yt} = F1(z).
Use the information from X ∩Bi(z) to specify how much charge is exchanged from each yj to z.

- N : Let z be a vertex and consider the configuration C on F1(z) that contains all vertices incident to
the faces in F1(z). Use the information from X ∩ C to specify how much charge is exchanged from
each incident face to z. In the hexagonal grid, N is larger than V2 but smaller than V3.

- N+ : Let z be a vertex and f an incident face, and consider the configuration C on F1(z) that contains
all vertices incident to the faces in F1(z) and all vertices within distance two of f . Use the information
from X ∩ C to specify how much charge is exchanged from f to z.

It is possible to define an infinite number of discharging rules. Note that some rules are inherently more
complex than others, so a partial ordering can be defined on the rules. For instance, V1 ⊂ V2 ⊂ N ⊂ V3,
so N is at least as effective as V2. We call attention to a few features of the discharging rules that should be
balanced carefully in order to create the most effective rules.

Scope of Information. The larger the configuration used for the discharging rule, the more information is
known about the local environment of the chargeable object receiving charge. However, as the configuration
C grows, the number of realizations of the rule grows approximately as 2|V (C)|, with some loss for symmetry
and for avoiding forbidden configurations.

Range of Exchange. Depending on the distance between z and the yi’s, charge can be exchanged across
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D1R2 D2R3 V2 N V3

Figure 3: Examples of Rules in the Hexagonal Grid.

several distances. It may be beneficial to allow for charge to move longer distances, especially if it is possible
to have large regions in G where X is much less dense than in other areas.

Dependence. For nearby chargeable objects, the configurations for different discharging rules overlap.
Thus, some information is shared between the chargeable objects and that information can be used to assign
value to the rule.

With these ideas in mind, we will describe a few extra features that can be used to customize our
discharging arguments. These features exist to mimic patterns in human-created discharging arguments.
When appropriate, we will “lose” information in order to reduce the number of cases we check.

See Figure 7 for the rule S (for “simple”). The rule S considers a vertex v0 and its three neighbors
v1, v2, v3 and exchanges charge from v1 to v0. The information used to describe the amount is listed by a
set of keys, where each key is a linear combination of variables x0, . . . , x3 where xi has value 1 if and only
if vi is an element. The “value” of a discharging rule is described by the tuple of key values preceded by a
label for the rule; the description used for the simple rule is s(x0, x1, x2 + x3). Thus, if x2 + x3 = 1, we
“forget” which vertex is an element and which vertex is not. We also use two kernel inequalities. These
inequalities are checked in order, and if they are satisfied we ignore any key values that do not use variables
from that inequality and use “∗” to signify an unknown quantity. For example, when x0 ≥ 1, the only
value to consider is s(1, ∗, ∗); this essentially implies that we do not want elements to receive charge from
neighbors. Also when x0 + x1 ≤ 0, the only value to consider is s(0, 0, ∗); this essentially implies that we
do not want to exchange charge between nonelements. There are five distinct ways to complete this rule,
and these are listed in Figure 7 along with values that will imply a lower bound of 2

5 on the density of an
identifying code in the hexagonal grid.

By carefully designing keys and kernels for rules, we can greatly reduce the number of cases to check.
Specifically, kernels are particularly helpful to restrict a rule when it sees a configuration that is more dense
than expected in a sparse set.

This step of creating a discharging argument is the step that requires the most amount of creativity
and human intervention. Creating interesting and effective rules is really where the proof author has most
control, and this step is absolutely crucial in determining whether a discharging proof will provide a strong
lower bound. The strength of the rules must be balanced with the computational challenge of verifying their
correctness, which is the topic of the next section.

4 The Linear Program
The most difficult part of assigning value to discharging rules is verifying that objects of low charge receive
enough charge to meet the goal charge while guaranteeing that objects of high charge do not lose so much
charge they drop below the goal charge. In the contrapositive, it must be impossible to construct a configu-
ration around a chargeable object where every discharging rule is evaluated and the resulting charge violates
the postconditions. Thus, we shall create a configuration C around each chargeable object (up to isomor-
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Rules Constraint Configurations
N J2 Vertex Face

Figure 4: The rules N and J2 and the resulting constraint configurations.

phism) such that C contains the shape of each rule that can exchange charge to or from that object, and then
generate each F-realization of C. Every such realization determines which realizations of the discharging
rules to use, and these values are combined to form a constraint in a linear program.

Recall that our postconditions for vertices and faces are implied by the following inequalities:

µ′(v) = µ(v) +
∑

u∈V (G)

DX(u, v) +
∑

g∈F (G)

DX(g, v) ≥ w

ν ′(f) = ν(f) +
∑

u∈V (G)

DX(u, f) +
∑

g∈F (G)

DX(g, f) ≥ 0

Since we are using a finite list of finite-sized discharging rules, this inequality will in fact use a finite
number of nonzero terms. Also, the amount of exchanged charge depends on a finite-sized local region
about each chargeable object. Given a gridG and a listR1, . . . , Rm of discharging rules, the constraint con-
figuration about a chargeable object x is defined as the set of faces and vertices that appear in an embedding
π(C) of a configuration C = C(Rj) such that π(z(Rj)) = x or π(yi(Rj)) = x for some i. Observe that
the constraint configurations about two chargeable objects, x and x′, are isomorphic if and only if x and x′

are in orbit within G.
For example, consider the rules N and J2 in the hexagonal grid as shown in Figure 4. Since the hexag-

onal grid is vertex- and face-transitive, we only need to consider the constraint configurations for v0 and
f0. About v0, there are three embeddings of N and three embeddings of J2 such that the vertices z(N) and
z(J2) are mapped to v0. Together, these embeddings form a constraint configuration about v0 consisting of
all faces in F2(v0), and all vertices incident to a face in F2(v0). About f0, there are 18 embeddings of N
and six embeddings of J2 such that one of the faces y1(N), y2(N), y3(N) or the face y1(J2) are mapped to
f0. Together, these embeddings form a constraint configuration about f0 consisting of all faces in F1(f0)
and all vertices incident to a face in F1(f0). These constraint configurations are shown in Figure 4.

Given a constraint configuration, the way the discharging rules assign value to the charge exchange is
determined exactly by the way that X intersects the vertices of this configuration. Therefore, we generate
all F-realizations of the constraint configuration. Given an F-realization C ′ of our constraint configuration
C, we add a constraint to our linear program.

Suppose we are using the rules R1, . . . , Rk. If C is a constraint configuration centered on a vertex v and
C ′ is an F-realization of C, then we enforce that µ′(v) ≥ w after the discharging process is complete by
adding the constraint

µ(v) +
k∑
j=1

∑
π:π(z(Rj))=v

∑
i

σj(S1(C
′), yi)−

k∑
j=1

∑
i,π:π(yi(Rj))=v

σj(S1(C
′), yi) ≥ w
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to the linear program. If C is a constraint configuration centered on a face f and C ′ is an F-realization of
C, then we enforce that ν ′(f) ≥ 0 after the discharging process is complete by adding the constraint

ν(f) +
k∑
j=1

∑
π:π(z(Rj))=f

∑
i

σj(S1(C
′), yi)−

k∑
j=1

∑
i,π:π(yi(Rj))=f

σj(S1(C
′), yi) ≥ 0

to the linear program.
Observe that whenever these constraints are satisfied, the discharging argument demonstrates a lower

bound of δ(X) ≥ w for any X ∈ forb(F). In order to produce the largest lower bound, use maxw as the
optimization function of the linear program.

Thus, we have a complete description of an adage proof. In summary, the three main steps are: (1)
Define a set of rules R1, . . . , Rk, and generate all F-realizations C ′ of their configurations, mapping the
values σj(S1(C ′), yi) to a list of variables; (2) For each constraint configuration (up to isomorphism), gen-
erate all F-realizations and add the resulting constraint to the linear program; (3) Solve the linear program
to determine the values σj(S1(C ′), yi) and the lower bound w.

These steps were implemented and executed for several sets of rules, which are shown in Appendix A.
All software and data are available online1. The following theorem implies Theorem 1.

Theorem 4. LetX be an identifying code in the hexagonal grid. The adage proof using ruleN demonstrates
δ(X) ≥ 23

55 ≈ 0.41818.

This bound of 23
55 seems to be a “natural” barrier, and not just an artifact of the rule N . The rule N

exchanges charge between vertices and incident faces, using the faces to aggregate and balance the charge.
We have a set of rules that exchange charge only among vertices and find the same bound of 23

55 .
The ADAGE framework as described is not tied to any specific grid or family of forbidden configurations

F . In the next section, we discuss variations on identifying codes and summarize the adage proofs of sharp
lower bounds for those variations.

5 Variations
Due to the modular development of the ADAGE framework for grids, the components for the grid and
the forbidden configurations can be interchanged. This allows for adage proofs to be constructed for the
hexagonal, square, triangular, and pentagonal grids. More planar grids could be implemented and used,
including those that are not vertex- or face-transitive, such as the hexagon-triangle grid.

There are several variations of an identifying code, each with its own application to fault-detection in
computer networks. A set X ⊂ V (G) matches these variations if the following constraints are satisfied:

- Dominating Set: N [v] ∩X 6= ∅ for all v ∈ V (G).
- Identifying Code: N [v] ∩X 6= ∅ and (N [v] ∩X) 6= (N [u] ∩X) for all distinct u, v ∈ V (G).
- Strong Identifying Code: N [v]∩X 6= ∅ and {N [v]∩X,N(v)∩X} ∩ {N [u]∩X,N(u)∩X} = ∅

for all distinct u, v ∈ V (G) (see [14, 18]).
- Locating-Dominating Code: N(v) ∩X 6= ∅ for v /∈ X , and N(v) ∩X 6= N(u) ∩X for all distinct

u, v ∈ V (G) \X (see [4, 13, 16, 32]).
- Open-Locating-Dominating (OLD) Code: N(v)∩X 6= ∅ and N(u)∩X 6= N(v)∩X for all distinct

u, v ∈ V (G) (see [22, 31]).
- Neighbor-Identifying Code: N [v] ∩X 6= ∅ and N [u] ∩X 6= N [v] ∩X for all uv ∈ E(G).
1See http://www.math.iastate.edu/dstolee/r/adage.htm or http://github.com/derrickstolee/ADAGE/ for

all software and data.
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All of these variations are implemented in the current version of ADAGE on grids. Several collections
of discharging rules were used to find adage proofs of lower bounds on these variations, and the results
can be found in Table 1. We believe this is the first use of neighbor-identifying codes; our motivation is
to demonstrate that we can find sharp lower bounds without known results to guide our search. Below, we
summarize adage proofs of previous sharp results with attribution to the first authors to find such bounds.
See Appendix B for lower bounds demonstrated by other rule sets.

Theorem 5 (Ben-Haim and Litsyn [3]). Let X be an identifying code in the square grid. The adage proof
using the rule V2 demonstrates δ(X) ≥ 7

20 .

Theorem 6 (Karpovsky, Chakrabarty, and Levitin [21]). LetX be an identifying code in the triangular grid.
The adage proof using the rule V1 demonstrates δ(X) ≥ 1

4 .

Theorem 7 (Honkala [13]). Let X be a locating-dominating code in the hexagonal grid. The adage proof
using the rule V2 demonstrates δ(X) ≥ 1

3 .

Theorem 8 (Slater [33]). Let X be a locating-dominating code in the square grid. The adage proof using
the rule V2 demonstrates δ(X) ≥ 3

10 .

Theorem 9 (Seo and Slater [31]). Let X be an open-locating dominating code in the hexagonal grid. The
adage proof using the rule V2 demonstrates δ(X) ≥ 1

2 .

Theorem 10 (Seo and Slater [31]). Let X be an open-locating dominating code in the square grid. The
adage proof using the rules D1R2 and D2R2 demonstrates δ(X) ≥ 2

5 .

Theorem 11 (Kincaid, Oldham, and Yu [22]). LetX be an open-locating dominating code in the triangular
grid. The adage proof using the rule D1R2 demonstrates δ(X) ≥ 4

13 .

Observe that among all variations on all three grids, the only variations that failed to find a sharp lower
bound were identifying codes on the hexagonal grid, and strong identifying codes on all three grids. Likely,
the strong identifying codes are more challenging because a strong identifying code is both an identifying
code and an open-locating dominating code, so the optimal density is highest among all of these variations.
Also, there are more forbidden configurations and this leads to fewer realizations of the discharging rules
(and hence fewer variables in the linear program).

There are also variations on identifying codes that are robust against edge changes [12, 15, 17, 24, 33],
or identify all sets of vertices of size at most ` [10, 23, 25], or consider balls of larger radius [19–21, 26, 29,
34, 35]. These variations are good candidates for future implementation.

6 Upper Bounds
Previous upper bounds on the minimum densities of codes in grids have used ad-hoc methods. For instance,
Cukierman and Yu [8] selected a tiling of the hexagonal grid and then used an integer program to minimize
the density of a periodic set using that tiling. While these methods have been effective, they rely significantly
on human selection of a good tiling scheme. We use our discharging arguments to find upper bounds.

Suppose a discharging argument is optimal with lower bound w and there exists an F-free set X with
δ(X) = w. Consider applying the discharging argument to X , fix some ε > 0, let V+ be the set of vertices
v with final charge µ′(v) ≥ w + ε, and let F+ be the set of faces f with final charge ν ′(f) ≥ ε. Observe
that since δ(X) = w, the density of V+ in G (and F+ in the dual of G) is zero. Thus, for every radius r > 0
there exists at least one vertex v ∈ V (G) where Br(v) ∩ V+ = ∅ and Fr(v) ∩ F+ = ∅.

This observation allows for a new method for searching for upper bounds. Start by selecting a reasonably-
sized region of G, such as Br(0)∪Fr(0) for some r > 0. Then, search over all F-realizations of this region

9



Dominating Set Neighbor-Identifying Code Neighbor-Identifying Code Neighbor-Identifying Code
Density 4

15 Density 3
8 Density 4
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4

Pentagonal Grid Hexagonal Grid Square Grid Triangular Grid

Figure 5: Some periodic tilings of optimum density.

using backtrack search for a realization that satisfies µ′(v) < w + ε and ν ′(f) < ε for all vertices v and
faces f ; the search can backtrack whenever all discharging rules are complete at a vertex or face and the
final charge is too large. If no such realization is found, then the lower bound is sharp and δ(X) > w for all
F-free sets X . If such a realization is found, then we can apply automorphisms of G to attempt to cover the
grid. Two automorphisms σ1 and σ2 generate a subgroup Γ. We will accept the automorphisms σ1, σ2 and
the realization Y if all Γ-orbits contain at least one element of Br(0) ∪ Fr(0) and there is no Γ-orbit that
contains an element of Y and an element of Br(0) \ Y . Using this algorithm, we determine several upper
bounds that match the lower bounds given by the adage proofs. The optimal sets are shown in Figure 5.

7 Conclusions and Future Work
This first application of the ADAGE framework is successful in showing alternative proofs of existing sharp
bounds [3,16,21,22,31,33], and surpassing the human-written proofs of lower bounds on identifying codes
in the hexagonal grid [5, 7, 8, 21]. The computer-automated portions of the method replace lengthy case
analysis and can be more detailed than something within the reach of a human prover. However, the simple
description of the discharging rules can perhaps lead to a deeper understanding of the structure and success
of a discharging argument. By automating the process of assigning value to the discharging rules, a proof
author can focus more on the creative process of designing rules. Thus, the most important part is to balance
the strength of the rules against the size of the constraint configurations.

We have implemented several grid operations that allow us to test the discharging methods on the grids
formed by almost all of the uniform convex tilings2. Basic rules such as Vi or DiRj can be generated
automatically, but more advanced rules that include keys and kernels must be designed by hand and tested.

All of the lower bounds presented in this paper are approximate, up to rounding error in floating point
arithmetic and the numeric instability of the linear programming solver. To be completely accurate, we
will implement a process to round all values to fractions and test all constraints using exact arithmetic. For
smaller instances, we can solve using simplex and round to fractions easily with no error. Multiple issues
arise here, though, as we use the barrier method instead of simplex due to significant time savings (our
programs are very degenerate) but barrier solutions are typically in the middle of a face of the polytope and
this leads to worse fractional representations. This tradeoff is non-trivial.

Acknowledgements
Thanks to Michael Ferrara, Stephen G. Hartke, Bernard Lidický, Ryan R. Martin, and Paul S. Wenger for
several very helpful discussions about the discharging method and identifying codes.

2See https://en.wikipedia.org/wiki/List_of_convex_uniform_tilings.
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B Bounds on Codes Using ADAGE

Set Type Hexagonal Grid Square Grid

Dominating Set V1
1
4 ≈ 0.250000∗ V1

1
5 ≈ 0.200000∗

Identifying Code
N 23

55 ≈ 0.418182† D1R2, D2R2
7
20 ≈ 0.350000∗

Upper [5]: 3
7 ≈ 0.428571‡ Upper [3]: 7

20 ≈ 0.350000∗

Strong Identifying
Code

D1R2, D2R2
8
17 ≈ 0.470588 D1R2, D2R2

7
18 ≈ 0.388889

Upper [14]: 1
2 ≈ 0.500000∗ Upper [14]: 2

5 ≈ 0.400000∗

Locating-Dominating
Code

V2
1
3 ≈ 0.333333∗ V2

3
10 ≈ 0.300000∗

Upper [16]: 1
3 ≈ 0.333333∗ Upper [33]: 3

10 ≈ 0.300000∗

OLD Code
D1R2, D2R2

1
2 ≈ 0.500000∗ D1R2, D2R2

2
5 ≈ 0.400000∗

Upper [31]: 1
2 ≈ 0.500000∗ Upper [31]: 2

5 ≈ 0.400000∗

Neighbor-Identifying
Code

V1
3
8 ≈ 0.375000∗ V1

3
11 ≈ 0.272727∗

Upper: 3
8 ≈ 0.375000∗ Upper: 3

11 ≈ 0.272727∗

Set Type Triangular Grid Pentagonal Grid

Dominating Set V1
1
7 ≈ 0.142857∗ V1

4
15 ≈ 0.266666∗

Identifying Code
D1R2

1
4 ≈ 0.250000∗ N+ 5

13 ≈ 0.384615
Upper [21]: 1

4 ≈ 0.250000∗

Strong Identifying
Code

D1R2
4
13 ≈ 0.307692 V2

5
12 ≈ 0.416666

Upper [14]: 6
19 ≈ 0.315789∗

Locating-Dominating
Code

V2
12
53 ≈ 0.226415 V2

22
69 ≈ 0.318841

Upper [13]: 13
57 ≈ 0.228070∗

OLD Code
D1R2

4
13 ≈ 0.307692∗ D1R2, D2R2

4
9 ≈ 0.444444

Upper [22]: 4
13 ≈ 0.307692∗

Neighbor-Identifying
Code

V1
1
4 ≈ 0.250000∗ D1R2, D2R2

1
3 ≈ 0.333333

Upper: 1
4 ≈ 0.250000∗

∗ Bound given is optimal lower bound on density.
† Bound given is current-best lower bound on density, but may not be optimal.
‡ Bound given is current-best upper bound on density, but may not be optimal.

Table 1: Density lower bounds for various set types in various grids, using various discharging rules.
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C Proof of Theorem 3
Proof of Theorem 3. By Observation 2, we can select the zero vertex v0 and zero face f0 such that |Bd(v0)| =
max{|Bd(v)| : v ∈ V (G)} and |Fd(f0)| = max{|Fd(f)| : f ∈ F (G)}.

Recall that by the definitions of µ and ν,

δ(X) = lim sup
r→∞

|X ∩Br(v0)|
|Br(v0)|

= lim sup
r→∞

∑
v∈Br(v0)

µ(v) +
∑

f∈Fr(v0)
ν(f)

|Br(v0)|
(1)

By hypothesis,

lim sup
r→∞

∑
v∈Br(v0)

µ′(v) +
∑

f∈Fr(v0)
ν ′(f)

|Br(v0)|
≥ lim sup

r→∞

∑
v∈Br(v0)

w +
∑

f∈Fr(v0)
0

|Br(v0)|
= w. (2)

Our goal is to prove that the limit at the end of (1) and the limit at the beginning of (2) are equal, thereby
showing that δ(X) ≥ w.

Using the definition of µ′ and ν ′ and the fact that DX is (c, d)-local, we find that the absolute difference∣∣∣∑v∈Br(v0)
[µ′(v)− µ(v)] +

∑
f∈Fr(v0)

[ν ′(f)− ν(f)]
∣∣∣ is equal to the magnitude of the charge that DX

exchanges across the boundaries of Br(v0) and Fr(v0):∣∣∣∣∣∣
∑

v∈Br(v0)

 ∑
u/∈Br(v0)

DX(u, v) +
∑

g/∈Fr(v0)

DX(g, v)

+
∑

f∈Fr(v0)

 ∑
u/∈Br(v0)

DX(u, v) +
∑

g/∈Fr(v0)

DX(g, f)

∣∣∣∣∣∣
≤

∑
u∈Br+d(v0)\Br(v0)

 ∑
v∈Bd(u)

|DX(u, v)|+
∑

f∈Fd(u)

|DX(u, f)|


+

∑
g∈Fr+d(v0)\Fr(v0)

 ∑
v∈Bd(g)

|DX(g, v)|+
∑

f∈Fd(g)

|DX(g, f)|


≤ |Br+d(v0) \Br(v0)| · [|Bd(v0)|+ |Fd(v0)|] · c+ |Fr+d(v0) \ Fr(v0)| · [|Bd(f0)|+ |Fd(f0)|] · c
≤ c′ · [|Br+d(v0) \Br(v0)|+ |Fr+d(v0) \ Fr(v0)|] ,

where c′ = c [|Bd(v0)|+ |Fd(f0)|]. Since G is amenable and has finite maximum degree ∆(G),

lim sup
r→∞

c′|Br+d(v0) \Br(v0)|+ |Fr+d(v0) \ Fr(v0)|
|Br(v0)|

≤ lim sup
r→∞

c′(∆(G) + 1)|Br+d(v0) \Br(v0)|
|Br(v0)|

= 0,

and therefore

lim sup
r→∞

∣∣∣∑v∈Br(v0)
[µ′(v)− µ(v)] +

∑
f∈Fr(v0)

[ν ′(f)− ν(f)]
∣∣∣

|Br(v0)|
= 0,

proving the claim.
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D A Full Linear Program Example
Recall the definition of the simple rule S on the hexagonal grid (represented here as Figure 7).

S

v0

v1

v2 v3

s(x0, x1, x2 + x3)

s(1, ∗, ∗) = 0

s(0, 0, ∗) = 0

s(0, 1, 0) = 2
5

s(0, 1, 1) = 1
5

s(0, 1, 2) = 2
15

x0 ≥ 1
x0 + x1 ≤ 1

Rule Keys and Realizations Kernels

Figure 7: The rule S with its keys and kernels.

The linear constraints for the adage proof that δ(X) ≥ 2
5 for an identifying code X are given below.

1 − 1 s(0, 1, 2) + 1 s(1, ∗, ∗) ≥ w
1 − 1 s(0, 1, 1) + 1 s(1, ∗, ∗) ≥ w
1 − 1 s(0, 1, 0) + 1 s(1, ∗, ∗) ≥ w
1 − 2 s(0, 1, 2) + 2 s(1, ∗, ∗) ≥ w
1 − 1 s(0, 1, 1) − 1 s(0, 1, 2) + 2 s(1, ∗, ∗) ≥ w
1 − 1 s(0, 1, 0) − 1 s(0, 1, 2) + 2 s(1, ∗, ∗) ≥ w
1 − 2 s(0, 1, 1) + 2 s(1, ∗, ∗) ≥ w
1 − 1 s(0, 1, 0) − 1 s(0, 1, 1) + 2 s(1, ∗, ∗) ≥ w
1 − 3 s(0, 1, 2) + 3 s(1, ∗, ∗) ≥ w
1 − 1 s(0, 1, 1) − 2 s(0, 1, 2) + 3 s(1, ∗, ∗) ≥ w
1 − 2 s(0, 1, 1) − 1 s(0, 1, 2) + 3 s(1, ∗, ∗) ≥ w
1 − 3 s(0, 1, 1) + 3 s(1, ∗, ∗) ≥ w
0 + 3 s(0, 1, 2) − 3 s(1, ∗, ∗) ≥ w
0 + 2 s(0, 1, 1) − 2 s(1, ∗, ∗) ≥ w
0 + 1 s(0, 1, 0) − 1 s(1, ∗, ∗) ≥ w

Observe the realization s(0, 0, ∗) does not appear in the linear program, since it always has a coefficient
of zero.
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