Appendix A

Elementary Definitional Equivalence

An algebraizable logic can also be characterized in terms of the definitional
equivalence of two elementary (i.e., first-order) theories, namely, the universal
Horn theory ES discussed in Chapter 1.3 (a theory without equality), and
the elementary theory of a quasivariety (a theory with equality). The treat-
ment of elementary definitional equivalence we use here closely follows Tarski,
Mostowski, and Robinson [45].

Let E; and E; be arbitrary elementary theories over the first-order lan-
guages £, and Ly, respectively. Let B be a relation symbol of £; that is not
in £5. By a possible definition of R in £, we mean a formula of the form

Ypo.. .Pa-1(8po.. . Pao1 < a(po,...,Pu-1))

where n is the rank of R and a is an arbitrary first-order formula of £, with
free variables po,...,pn-1. (For the purposes of the present discussion we treat
operation symbols of rank n as relation symbols of rank n+1 in the usual way.)
E; and E; are said to be elementaridy definitionally equivalent if there exists
a system T' of possible definitions of the relation symbols of £; \ £1_; in £,
for 1 = 0,1, such that the theory E over the the combined language that is
axiomatized by E1U EpU T is a conservative extension of both £, and Ej; ie.,
the intersection of £ with the set of £;-sentences coincides with E;.

The relationship between a deductive system S and a quasivariety K ex-
pressed in Definition 2.8 can be viewed as definitional equivalence exactly in
this sense, but with the possible definitions required to be of a very special
form. What is interesting here is that, in the event S is protoalgebraic, one
can allow the possible definitions to be of a much more general form without
getting a meore general notion of equivalence,

Let & be an arbitrary deductive system over the propositional language £,
and let ES be its associated universal Horn theory over the first-order language
(without equality) Lp. Let K be any quasivariety over the first-order language
L obtained by adjoining the equality symbol = to £. We write EK for the
elementary (first-order) theory of K.

Recall from Chapter 1.4.1 that a deductive system & is protoalgebraic if the
Leibniz equivalence operator §2 is order-preserving on the lattice of §-theories.
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Theorem A.1 Let & be a deductive system and K a quasivariely.

(i) If S is algebraizable with equivalent semantics K, then ES and EK dre
elementarily definitionally equivalent. Conversely,

(i1) If ES and EK are elementarily definitionally equivalent, and if, in ad-

dition, & is protoalgebraic, then § is algebraizable with equivalent semantics
K.

Proof. The models of ES are exactly the S-matrices (the matrix models
of §). In view of Lemma 5.2, a S-matrix A = (A, F) satisfies the first-order
sentence

Vpvg(p = ¢ D(p Ag)) (1)

ifQAF =1,,ie, iff A is reduced. Let E be the extension of ES over the lan-
guage Lp » axiomatized by (1). Then the models of E are exactly the reduced
S-matrices. Thus, since every §-matrix {A, F) is elementarily equivalent (as an
Lp-structure) to a reduced matrix (the quotient matrix (A/Qp F, F/Qp F)),
it follows that E is a conservative extension of ES.

Now assume that § is algebraizable, and let K be its equivalent quasivariety
semantics. Let EX be the elementary theory of K over the language £... Since
A is a model of EK (i.e.,, a member of K) iff A is the reduct of a reduced
S-matrix (by 5.3), we see that E is also a conservative extension of EK. So
we have that ES and FK are elementarily definitionally equivalent by means
of the possible definitions (1} and

Vp(Dp < §(p) = €(p))

- where §(p) = €(p) 1s any set of defining equations for K. (The above argument
shows that this latter definition is actually a logical consequence of ES together
with (1).) This proves A.L(i).

To prove part (ii) of A.l1 we assume that ES and FK are elementarily
definitionally equivalent with possible definitions

VpVe(p = ¢~ alp.q)), @
vp(Dp « B(p)) 3

where a and J are arbitrary first-order formulas in the languages £y and L,
respectively. We will use Theorem 3.7 to show that K is an equivalent algebraic
semantics for §.

Let E be the Lp »-theory axiomatized ESU EK together with the possible
definitions (2) and (3). For each T € ThS let F;r = (Fmg, T) be the formula
matrix associated with T, and let O, T be the binary relation on F'm defined
by

WT ={{&n)  Fr = afé,n]}-
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We show that (1, is a isomorphism between ThS and ThK that commutes
with surjective substitutions.

For each first-order sentence 7 of Lp », let ¥ be the equality-free sentence
in Lp obtained from 4 by replacing every atomic subformula of the form £ =~ g
by @(£,n). Then we have

EF~y & ESHA4. (4)

For suppose E F <, i.e, v € E. Then definition (2) implies that ¥ € E. But
4 is a sentence of Lp, and since F is a conservative extension of ES we must
have ¥ € ES. The implication in the opposite direction is obvious.

(4) implies that (4, T has all the properties of the identity relation that can
be formulated in the language Lp. This is equivalent to saying that it is a
congruence on Fm (i.e., an equational theory in the sense of Chapter 2), and
that 2, T is compatible with T". So by 1.6(ii) {3, T = 02T, the Leibniz equality
relation on Fm associated with the theory T.

Define

Hg® ={p€ Fmg : Fm, /0 |= Bl¢]}

for each @ € ThK. Observe that for each T € ThS we have ¢ € HgfdT iff
Fm. /QT |= Blp] iff Fr |= Ble] (by definition of §%, T'). But taking 4 in (4) to
be the possible definition (3) we get Fr |= 8[¢) iff p € T. Thus HgQT =T. In
a similar manner it can be shown that 2H30 = © for each ® € Th K. Hence
the Leibniz operator @ is a bijection between ThS and Th K, and, since § is
protoalgebraic by hypothesis, € is actually an isomorphism between the theory
lattices of & and K. It follows immediately that the hypothesis of Lemma 4.6
holds, and hence that 2 commutes with surjective substitutions. We can now
apply 3.7 to conclude that & is algebraizable with equivalent semantics K.

In defining the notion of equivalent algebraic semantics, and by means of it
the concept of an algebraizable logic, we required that the language of K and
that of § be the same. This is a natural course to take in view of the historical
development of algebraic logic, but in the present context it appears somewhat
arbitrary. We may drop this requirement and allow possible definitions for
the primitive connectives of &, as well as for the predicate D, and similarly
for the operation symbols of K. Theorem A.l, in an appropriately modified
form, would continue to hold. We would however get a more general notion of
equivalent algebraic semantics (but not of algebraizability). A quasivariety K
would be an equivalent algebraic semantics for S in this more general sense iff it
is an equivalent algehraic semnantics in the original sense for another deductive
system S’ that formalizes the same logic as S on the basis of a different set of
primitive connectives,



Appendix B

An Example

The Leibniz operator 2 is injective and order-preserving on the lattice of
theories of every algebraizable deductive system. Conversely, if 2 has these
properties, then the system is algebraizable, provided 1 also preserves the join
of each directed family of theories (Theorem 4.2). We had conjectured that
the property of being order-preserving and injective is enough to guarantee
algebraizability. H. Andréka and 1. Németi have constructed a counterexample
to this conjecture however, which is also interesting for other reasons. We
present a slightly modified version here with their kind permission.

Let £ = {A,x} with A a binary and x a unary connective. Let § be the
deductive system over £ defined by the axioms

*p, pAp,
and the infinite family of inference rules

p,p /—\}{"5 g, {(detachment)

pEs 9 Adlxp/p], for each ¥ € Fmy,
phs 9p/p] AY, for each ¥ € Fmy.

Theorem B.1 § is injective and order-preserving on ThS, but it does not
preserve unions of directed subsets of ThS. Hence £ is not algebraizable.

The proof will be given in a sequence of lernmas.
Lemma B.2 Q is injective and order-preserving.

Proof. We first show £2 is order-preserving. Suppose S and T are S-theories
such that § C T. We must show 25 ¢ QT. 05 is a congruence on Fmyg.
So it suffices to show that 05 is compatible with T (Theorem 2.7). Suppose
(p,%) € 05 and p € T. Then {0 Ap, 0 Ay) € 05 since NS is a congruence.
But v A € S by the second axiom. Thus w A1 e § C T because 025 is
compatible with S. Hence we conclude finally that ¢ € T by detachment.
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To show f2 is injective, it clearly suffices to show that, for each T € Th S,
p €T < {p,xp) € OT. (1)

Suppose v € T. Then by the last two inference rules we have

Sle/p) & Blxo/pl, Dixpip) A Dle/pl € T

for every 9 € Fm. Thus, by detachment, d[¢/p] € T iff d[xp/p] € T for every
¥ € Fm, and so (p,*p) € QT . Suppose, conversely, that {p,xp) € QT. Then
(0 A, % Ap) € OT. Since ¢ A ¢ € T, and QT is compatible with T,
xp A € T. But »¢ € T by the first axiom. Hence ¢ € T by detachment.
This establishes (1), and thus £ is injective in ThS. 1

The difficult part of the proof of B.1 is establishing that € does not preserve
unions of directed sets of theories. For this purpose we construct an infinite
chain To C 77 € T3 € ... of S-theories with the property (J,., S¥Tn) #
R(Unco Tn)- We first define some useful auxiliary notions.

Let n < w be fixed but arbitrary; the length of a formula ¢ will be denoted
by [¢}. Define

Sn={xp:pe FmpU{pAp:pe Fm}U{p:|p| < n}.

S, is not a theory, but will eventually be transformed into one. For this purpose
we define a binary reduction relation =, on formulas by the condition that
¢ = ¢ iff ¢ contains a subterm of the form =€ with £ € &, and % is obtained
from ¢ by replacing x£ by £, i.e., by deleting the ». In symbols,

p=>n v iff ¢ =79/p] and ¥ =J[{/p]
for some 9 € Fm and £ € §,.

Let =% be the reflexive, transitive closure of =,. =% is well founded in the

strong sense that, for each formula ¢, there exists an ! such that ¢ =, ¢ =4
©3=n ... = Pm implies m < [,

In the following two lemmas we establish the basic properties of =, and
=* that we shall need.

Lemma B.3 (i) If o = 9, then 9[p/p] =, I[¥/p| for every ¥ and p.

(i) p A = 9 iff 9 = ¢ At with either p =, ¢’ and Y =9, or p = ¢/
and ¢ =, '

(1) x¢ =n ¥ tff tp =9 € Sp, or =, O with 9 = 4.

(iv) If ¢ € S, and ¢ =, ¢, then ¥ =% ¥ for some ¥ € §,.
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Proof. (i)—(iii) are obvious. To show (iv), suppose first of all the ¢ = %',
Then either ¢y = ¢' € S, or ¢ =, ¥ with «} = ¥; ¥ € 5, in both cases.
Suppose next that ¢ = ¢’ Ap'. Then ¢’ =, F,and ¢y =0 A ' ory = ¢ A4,
Thus ¢ =, 9 Ad € §,. Finally, the result is obvious if [¢| < n. 1

The next lemma establishes the so-called Church-Rosser property for =% .

Lemma B.4 Ifp =) ¢ and ¢ =% /', then there ezists a & such that ¢ =% &
and ¥ =) k.

Proof. Because =) is well-founded in the strong sense, we lose no generality
by assuming ¢ =, ¢ and ¢ =, ¥'. Thus ¢ = 9x{/p| and ¢ = ¥ [x£'/p'], with
£, € S, and ¥ = J[¢/p] and ¥’ = ¥[¢'/p']. Suppose the oecurrences of x£
and x£' in ¥ are disjoint. Then d=Ax{/p,x¢'/p'] with ¥ = A[€/p, x£'/p'] and
Y = Ax£/p, &' /p']. We can take & = X[£/p, £'/p'].

Suppose one of x{ or =€’ occurs in the other, sav § = A[x€'/p']. Then
o = BpAE' /' )/p) and p = BAE'/}/p) and ¥/ = S[=AE'/p']/p]. Observe
that, since Alxé'/p'] = £ € S, and A€’ /1] = ME'/], we have AE'/p/] =7
n € S, by Lemma B.2(iv). Take x = ¥[p/p]. Then v = F[Ax€'/p']/p] =n
dAE'/p'l/p] =7 din/p] = &, and ¥ = SA[E'/p']/p] =7, Sxn/p] = din/p] =
.1

We denote by =% < the binary relation (=X}| (=%)}! on Fm (ie., the
relative product of =% with its converse). So ¢ =%« 1 iff there exists a
¥ € Fm such the ¢ =) ¥ and ¢ = ¥. We also write < for (=,)"'. Note
that =, and < are both included in =} <.

Lemma B.5 =] <« is an equivalence relation on Fm.

Proof. =)<« is clearly reflexive and symmetric. Assume o =X< ¢ and
Yp=3red Let o=k k, ¢ =k k and ¢ =% A, 9 =F A By the Church-Rosser
property there is a g such that x =7 p and A=} 4. Thus ¢ =} x =7 p and
9=F A=) u. Sop=>r< . Thus =)<« is transitive. I

Define
T, ={p:p=>%< 1 for some ¢ € 5, }.

Lemma B.6 T, is a theory.
Proof. T,, contains all the axioms since S, does and 5, C T,,. Suppose

p,pAveT, Thenp=X<=p' € S,,and p Ay =< " AyY” € §, where
p=r " and ¥ =) . " Ay" € S, implies either p” = " or |¢” Ay"| < n.
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In the latter case || < n, and hence ¢ € S, ;s0 ¥ € T,,. We can now assume
' =y Thusp=Xe g € S, pafey’, and =%« . Since 22X e is
an equivalence relation, 1) =X« ¢’ € §,,, and hence ¥ € 7,

Now assume ¢ € T,. Then p=>f< ¢’ € S,. Let ¢ =% ¢ and ¢' =* .
Then 3(p/p] A d[xp/p] = Ol/p] AV« /pli< Flp/p] Ad[xe’ /p] =n Flp/pl A
O’ /p] =5 Fle/p] &Vl /p] te Ble/p] Ad[e/p). So

Slp/p] A dlxp/p] =< Pip/p] Adlp/p);

hence d[p/p] Ad[xp/p] € T,,. Similarly, ¢ € T, implies ¥{xp/p] Ad[p/p] € Ty.
|

Lemma B.7 If ¢ contains no occurrence of x and ¢ € T, then ¢ € §,.

Proof. Assume p =< ¢ € S,,say ¢ =>* 9 and ¢ =¥ 9. Because of the
hypothesis on ¢, we must have ¢ = . Thus ¢ =X v and ¥ € §,. Let 1 be
a formula of minimal length satisfving this condition. Suppose ¥ # ¢. Then
Y =n ¥ =) ¢. By Lemma B.3(iv), ¢' =} ¢" for some ¢" € §,. By the
Church-Rosser property, 1" = <« ¢, and by hypothesis on ¢, ¢ =% . But
|"| < ||, contradicting the assumption. Sop =9 € S,.

Proof of Theorem B.1: € is injective and order-preserving by Lemma B.2.
So it only remains to show that it does not preserve joins of directed sets.
Observe that Unc, Tn 2 Uncw Sn = Fm, so Q(U,c, Tn) is the universal
relation on F'm. Let p and ¢ be distinct variables. (A"pP*1)A (A" ¢"*t1) ¢ S,
and hence it is not in 7;, by the last lemma. Thus {p,q} ¢ Q7, for all n. &

The deductive system & of Theorem B.1 was defined by an infinite number
of inference rules. The conjecture mentioned at the beginning of the appendix
might still be true if we consider only finite axiomatizable deductive systems;
the problem is open. It is alsoc not known if the conjecture holds for the so-
called strongly finite systems; these are the deductive systems defined by a
finite set of finite matrices.



Appendix C

Predicate Logic

The problem of algebraizing predicate logic is of a different character than the
problem for propositional logics because the standard deductive systems for
predicate logic are not structural. They fail to be structural for two closely
related reasons. The first has to do with the ambiguity inherent in the use
of individual variables for two essentially different purposes—as both free and
bound variables. The second is connected with the way the systems deal with
the process of substituting terms for the free occurrences of an individual vari-
able in a formula. Consider for example the ¥-elimination and V-introduction
rules of Kleene [23]:

Vop(v) = @(t) and o — p(v)+ ¢ — Vup(v).

In the first ¢ is a term free for v in @(v), and ¢(¢) is the result of substituting
t for all free occurrences of v. In the second v does not occur free in .
Neither of the rules is structural. (The first is actually an axiom; an axiom is
structurael if all its substitution instances are axioms.) ¢(v) and @(t) cannot
be treated as distinct formula variables; similarly, ¥ cannot be considered a
variable because of the stipulation that it contains no free occurrence of v. The
problem is that the standard deductive systems for predicate logic all deal with
substitution, and the distinction between free and bound variables, informally
in the metalanguage; to obtain a structural system these things have to be
handled formally within the system itself. Such systems do exist and they are
algebraizable. _

There are different ways of treating substitution formally, and these lead to
deductive systems with essentially different equivalent quasivariety semantics.
Two main ways of doing this have been developed in the literature. The
formula ¢(t) considered above in connection with the V-elimination rule is
logically equivalent to Jv(v = t A @), provided v does not occur in t. So V-
elimination can possibly be replaced by the (almost) structural rule Yvep(v) —
Juv(v = t A ¢). The algebraization of deductive systems that exploit this fact
give rise to the variety of eylindric algebras. One can also deal with substitution
more directly by introducing into the formal langnage a substitution operator
S for each mapping o of the set of individual variables into the set of terms.
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In this case p(t) is identified with S/, . The class of algebras that arise in
this way are called polyadic algebras. Here we only discuss the process that
leads to cylindric algebras; the formal development of the one that leads to
polyadic algebras is quite similar.

In this context it is customary to deal only with first-order logics that
contain no extra-logical operation symbols. This restriction, although not
essential, greatly simplifies the associated structural deductive system, and it
is well known that every first-order logic is equivalent in a natural sense to
a logic with this property. We will describe how to massage the standard
first-order language mto a propositional language of the type we have been
dealing with in this paper. The propositional language we will actually define
corresponds to a first-order language that differs in several important respects
from the standard first-order language that is normally considered. First of
all, it can have any finite or infinite number of individual variables; we assume
they are canonically ordered in a sequence wg,v1,...,%,..., for £ < a, where
a is a fixed but arbitrary ordinal. a is called the dimension of the language.
There is a denumerable set P = { Py, P, ...} of relation symbols all of which
are assumed to be of rank a. {So each F, is infinitary whenever a is infinite.)
Standard first-order languages all of whose relation symbols are generic in
this sense—i.e., their ranks coincide with the dimension of the language—
are called full languages in Henkin, Monk, and Tarski [15, Part II]. Finally, all
atomic formulas, which do not involve equality, are of the form Povovy ... 7¢ .. .
with the variable arguments occurring in canonical order; languages with this
property are called restricted in [15, Part II].

This language will be called the (restricted, full) first-order language of
dimension a (over P). The propositional language associated with it is denoted
by £.. Besides the usual sentential connectives vV, A,~, —, T, and L, it has
two a-sequences of primitive unary connectives

VUD,Vvl,...,Vtre, ey 3‘00,31’1, ...,3‘1}{,...,

for £ < @, corresponding to universal and existential quantification over each of
the individual variables. £, also contains a primitive nullary (constant) symbol
v, & vy for each pair of ordinals kK, A < a. Each of the symbol complexes Vu,,
Jv,, and v, = vy 1s to be considered indivisible in £, . It would be better from
a logical point of view to denote these connectives by something like ¥, 3a,
and =, », but for practical reasons it seems advisable to keep L4, in form at
least, as close to the first-order language as possible.

Lo, like all the languages we consider, also contains the infinite sequence
of propositional variables pg,p1,... . It is appropriate in this context to call
these relation variables, rather than propositional variables. They correspond
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to the atomic formulas (in restricted form)
Povo...vf ey Plvu...ve eay e

of the first-order language.

The deductive system PR, of first-order predicate logic over the language
Lo is defined by the following axioms and rules of inference; &, A, and u range
over all ordinals < a, and p, ¢, and r stand for po, p1, and pa, respectively:

Al  all classical tautologies,

A2 Vu(p— g) = (Youp— Vueg),

A3 V‘l},;p - p,

A4 Vu.Vuyp — VUAVU.-;P,

Ab  Vup— Yy Yo.p,

AB E'U,{p—a V'Unavnp,

AT v = v,

A8 Juc(ve = wy),

A9 vomwy - (’U,.;%‘Uﬂ—*v;::vp),
A0 vox v = (p = Voc(oe = vy = p)), ik #
All EIv,‘p — -annﬁp,

Rl p,p— gtpr, 9, (modus ponens)
R2 prpg, Yu.p. (generalization).

This formulation of the predicate calculus is due to I. Németi. A closely
related but non-structural one can be found in Monk [31]; see also Henkin,
Monk, and Tarski [15, Part II, p.157]. An earlier effort to formulate predicate
logic in a propositional language is undertaken in Jaskowski [18).

Like all deductive systems we comsider, PR,, is structural. FEach axiom
and inference rule can be considered a schema that includes, along with itself,
all its substitution instances. So the relation variables represent relations of
all possible ranks. This is why the relation symbols Pg, Py, ... in the full first-
order language, which correspond to the the relation variables of £, must
be generic. In a structural deductive system that attempts to model normal,
finitary predicate logic the relation symbols cannot be interpreted as variables.
New nullary symbols (i.e., constants) must be adjoined to £, for this purpose.

Let R = {R; : i € I} be a system of constant relation symbols, and let
p : I — a be the corresponding rank function. Let £F be the language b-
tained from £, by adjoining for each R; € R a single new nullary symbol
Rivo...vg ..., € < pi, where vg...v¢ ... is an initial segment of the canonical
sequence vp, vy, ..., v, ... of individual variable symbols. The corresponding
first-order language over P U R is no longer full but remains restricted. We
denote by PRY the deductive system over LY defined by axioms Al-A1l, the
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rules R1, R2, and the additional axiom

A12 Rivi...vg... - VYo Rivg...vg..., t€landpi<K<a.

Now let R be a set of finitary constant relation symbols, and consider the
first-order language over R as it is ordinarily defined in a textbook in logic. We
shall call this the standard first-order language cver R. 1t is of dimension w,
and contains no relation variables. It is unrestricted in the sense that atomic
formulas of the form R;vy0 . . . Uy (i~ 1) May occur where the vpo, ..., % (1) are
not in canonical order. By considering only formulas whose atomic subformulas
are in restricted form we get the restricted standard first-order language over R.
Bv limiting attention to restricted formulas we do not diminish the expressive
power of the standard first-order language since every standard formula is
logically equivalent to one in restricted form. For example, if R; is binary,
then R;vivg is logically equivalent to

Jvy3vua(vy = v A v vz A Jugdvy(ve & v2 A vy = v3A Rivev))

In [31] Monk proves that the axioms A1-A12 and rules R1, R2 provide a
sound and complete formalization of first-order predicate logic! in the following
sense: Let them be interpreted as formula and rule schemata in the restricted
standard language of R. (l.e., the relation variables p, g, and r are to be
interpreted as metavariables ranging over all restricted standard formulas.)
Then an arbitrary restricted formula is logically valid iff it is derivable from
A1-A12 m the usual way by means of the rules R1 and R2.

The following definition is taken from Henkin, Monk, and Tarski (15, Part
1, p.162).

By a cylindric algebra of dimension a, where a is any ordinal number, we
mean an algebraic structure

A= (A) +5—s 03 15 Cr s dx.)\)n,)(a

such that 0, 1, and d,, are distinguished elements of A, ~ and ¢, are unary
operations on 4, + and - are binary operations on A, and such that the fol-
lowing postulates are satisfied for all z,y € A and all x,A,u < a:

! Monk’s axiom system is slightly different from the one given here, but his proof is easily
modified.

P
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C0 the structure (A, +,-,—,0,1) is a Boolean algebra,
Cl ¢0=0

C2 z< ez (le, T+ ez = xz),

C3 el &y) = T Gy,

C4 c.onr = pcez,

Co de =1, M y

C6 dy, = cx(da - cl,;)(), if £ £ /),

C7 cofder " 2) cefden - —2) = 0,7 if & £ A,

The class of all cylindric algebras of dimension a is denoted by CA,. The
elements d., are called diagonal elements, and the operations ¢, are called
cylindrifications.

Let R be an arbitrary set of constant relation symbols, and adjoin a new
nullary symbol r; to the language of CA, for each R; € R. If we identify +,
=50, 1, &, dea, and 7y, respectively with v, A, =, L, T, Ju., ve = vy, and
Rivg...ve ..., with £ < pi, and if we interpret z — y as -z + y and Vu.z
as —cx—2, We get an algebra over the language £LF. We denote by CA® the
variety of algebras over LX defined by the identities C1-C7 together with the
constant identities

(C8) ¢m =1, forallie I and pi < & < a.

Theorem C.1 Let a be any ordinal number.

(i) PRy is algebraizable, and its equivalent quasivariety semantics is defi-
nitionally equivalent to CA,.

(ii) For any set R of constani relation symbols, PRT is algebraizable, and
ils equivalent quasivariety semantics is definitionally equivalent to CAY.

Proof. (i) is a special class (i} with R = §. To prove PR is algebraizable
we apply Corollary 4.8. Take A(p,¢) ={p — ¢, ¢ — p}. Then the consequence
relationships

FpR® ¥ A ¥, pAYFpgr Y Ap, pAY, Y Adbpgr ¢ A,
together with detachment and the G-rule:
(P)‘PAwI_PRf P, V’;tpl"PRE ‘pAd)a
all follow at once from Al and RI. Similarly for the substitution rule

®o A¢0’ ey ¥Pn—1 A".b'n.——l l_1;)}3;"5- Wpa ... n-1 Aw'ﬂbﬂ---"/}n-ls (1)

with w € {V,A,~,—}. For w = Vu,, (1) follows from A2 and the rules R1

and R2, and this in turn gives (1) with w = Jv, using All. Thus conditions
4.7(i)~(iv) and 4.8(v),(vi) are satisfied; so PR is algebraizable.
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Recall that the relation variables pg, pi, ... of LX can be interpreted as the
infinitary restricted atomic formulas

PD'UQ,...'Ue..., Plvo...vf...,....

Under this interpretation the one-one correspondence between the constant
formulas of L% and the restricted formulas of the standard first-order language
over R, discussed previously, can be extended to a correspondence between the
whole of £L* and the entire restricted first-order language over PUR. If this is
done then, a straightforward modification of the proof of a result in [15, Part
I1, p.161, Theorem 4.3.28(ii)] can be used to show that CA¥ is definitionally
equivalent to
{Fmm /QaT : T e Th(PRE ).

Thus CAR is the equivalent quasivariety semantics for PR by Theorem 4.10.
|

One can also define for each ordinal a a deductive system L, over the
language £, by semantical rather than syntactical means. Consider any ¢ €
Fmg , and let & be the corresponding formula in the restricted full first-order
language of dimension a over P. Any relational structure A = (A,PHA),L.(W
such that PA C 4% for all n < w is called an a-structure. The notion of 3
being universally satisfied in A, in symbols A |= &, is defined in the standard
way. For all wo,...,¢n_1,% € Fm,;§ we define o, ...,0n_1 b, ¥ if, for
every a-structure A,

Al=3 foralli<n = Al=vy

Finally, for any TU {¢} C Fmg,, define T by o if [ b 4 for some finite
I" C T. The deductive system L® = (L® iz} for any set of non-generic
relation symbols is defined similarly. )

The theorem of Monk [31] discussed previously can now be reformulated
as follows: for each constant formula ¢ of LR,

Fig ¢ @ FPR} ®.

In general F1x and-?-PRlz do not coincide. But LY is an extension of PR¥,
and hence it is also algebraizable (Corollary 4.9). The equivalent quasivariety
semantics for L, is the class of generalized cylindric set algebras of dimension
a; see 15, Part 1I]. Monk [32] proves that L, cannot be defined by a finite set
of axioms and rules of inference. (He actually deals with the polyadic analogue
of L,.) For a discussion of L, for a > w see Andréka, Gergely, and Németi
[3]. A survey of the work that has been done on L¥, PRF, and related logics,

=3
together with a comprehensive list of references, can be found in [15].
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