Desingularization of an immersed self-shrinker.

Xuan Hien Nguyen
(joint work with S. Kleene and G. Drugan)

Iowa State University

May 29, 2014
Examples of gluing constructions

Summary of a classical construction
 Minimal surfaces
 One of the difficulties

An immersed configuration
 The problem
 The fix
Examples of Gluing Constructions
Desingularizations

To desingularize: to transform an immersed surface into an embedded one
Scherk surfaces are **minimal** surfaces:

http://www.indiana.edu/~minimal/archive/Classical/Classical/ShearScherk-anim/web/qt.mov

There is a **one-parameter family** of them:

http://www.indiana.edu/~minimal/archive/Classical/Classical/ShearScherk-anim/web/qt.mov
Building blocks: Scherk minimal surfaces

Scherk surfaces are minimal surfaces:

There is a one-parameter family of them:

http://www.indiana.edu/~minimal/archive/Classical/Classical/ShearScherk-anim/web/qt.mov

They enjoy symmetries.
The wings tend to half-planes exponentially fast.
Minimal surfaces, $\tilde{H} = 0$

[Kapouleas, 1997]

Self-translating surfaces: $\tilde{H} + \tilde{e}_z \cdot \tilde{\nu} = 0$

[Nguyen, 2012]

[Traizet, 1996]

[Dávila-Del Pino-N., almost done]
Self-shrinking surfaces: \(\tilde{H} - \frac{1}{2} \tilde{X} \cdot \tilde{\nu} = 0 \)

[Kapouleas–Kleene–Møller], [N.]

The non-compact surface is asymptotic to a cone at infinity.
Common features of the examples

- the equation is of the form

\[\tilde{H} + \text{stuff} = 0. \] (1)

- the stuff above scales properly:
Common features of the examples

- the equation is of the form
 \[\tilde{H} + \text{stuff} = 0. \]
 (1)

- the \textit{stuff} above scales properly:
 \[X = \frac{1}{\tau} \tilde{X}, \quad H = \tau \tilde{H} \]
Common features of the examples

- the equation is of the form
 \[
 \tilde{H} + \text{stuff} = 0. \tag{1}
 \]

- the \text{stuff} above scales properly:
 \[
 X = \frac{1}{\tau} \tilde{X}, \quad H = \tau \tilde{H}
 \]

Equation (1) becomes

\[
H + \tau \text{ stuff} = 0
\]
Common features of the examples

- the equation is of the form

\[\tilde{H} + \text{stuff} = 0. \]

(1)

- the stuff above scales properly:

\[X = \frac{1}{\tau} \tilde{X}, \quad H = \tau \tilde{H} \]

Equation (1) becomes

\[H + \tau \text{ stuff} = 0 \]

- it is a desingularization of two or more intersecting surfaces.
Immersed self-shrinking surfaces,

[Drugan-Kleene, preprint]
Immersed self-shrinking surfaces,

[Drugan-Kleene, preprint]
Immersed self-shrinking surfaces,

[Drugan-Kleene, preprint]

Desingularizing immersed surfaces? Same story?
Immersed self-shrinking surfaces,

[Drugan-Kleene, preprint]

Desingularizing immersed surfaces? Same story? Yes and no.
Summary of a classical construction: minimal surfaces
Sketch of the proof: minimal surfaces

1. Construct an approximate solution:
Sketch of the proof: minimal surfaces

1. Construct an approximate solution:
 - wrap a Scherk surface around a large circle

 \[\text{scale by } \tau, \text{ a small constant (or rather, scale everything else by } \frac{1}{\tau} \). \]
Sketch of the proof: minimal surfaces

1. Construct an approximate solution:
 - wrap a Scherk surface around a large circle
 - scale by τ, a small constant
 (or rather, scale everything else by $\frac{1}{\tau}$).
Sketch of the proof: minimal surfaces

1. Construct an **approximate solution**:
 - wrap a Scherk surface around a large circle
 - scale by τ, a small constant
 (or rather, scale everything else by $\frac{1}{\tau}$).

2. Look at **graphs of functions** over this approximate surface:
Sketch of the proof: minimal surfaces

1. Construct an approximate solution:
 ▶ wrap a Scherk surface around a large circle
 ▶ scale by \(\tau \), a small constant
 (or rather, scale everything else by \(\frac{1}{\tau} \)).

2. Look at graphs of functions over this approximate surface:
 ▶ position \(X \rightarrow X + f\nu \)
Sketch of the proof: minimal surfaces

1. Construct an approximate solution:
 ▶ wrap a Scherk surface around a large circle
 ▶ scale by τ, a small constant
 (or rather, scale everything else by $\frac{1}{\tau}$).

2. Look at graphs of functions over this approximate surface:
 ▶ position $X \to X + f\nu$
 ▶ mean curvature $H \to H + \Delta f + |A|^2 f + \text{Quadratic}$
Sketch of the proof: minimal surfaces

1. Construct an approximate solution:
 ▶ wrap a Scherk surface around a large circle
 ▶ scale by τ, a small constant
 (or rather, scale everything else by $\frac{1}{\tau}$).

2. Look at graphs of functions over this approximate surface:
 ▶ position $X \rightarrow X + f \nu$
 ▶ mean curvature $H \rightarrow H + \Delta f + |A|^2 f + Quadratic$
 ▶ solve $L(f) := \Delta f + |A|^2 f = E$ on each of the 5 pieces
Sketch of the proof: minimal surfaces

1. Construct an approximate solution:
 ▶ wrap a Scherk surface around a large circle
 ▶ scale by \(\tau \), a small constant
 (or rather, scale everything else by \(\frac{1}{\tau} \)).

2. Look at graphs of functions over this approximate surface:
 ▶ position \(X \rightarrow X + f \nu \)
 ▶ mean curvature \(H \rightarrow H + \Delta f + |A|^2 f + \text{Quadratic} \)
 ▶ solve \(L(f) := \Delta f + |A|^2 f = E \) on each of the 5 pieces
 ▶ finish with a fixed point theorem
Linear operator on the Scherk surfaces

\[L(f) = \Delta f + |A|^2 f \]

is associated to normal perturbations of the mean curvature. The mean curvature is invariant under translations.
Linear operator on the Scherk surfaces

\[L(f) = \Delta f + |A|^2 f \]

is associated to normal perturbations of the mean curvature. The mean curvature is invariant under translations.

- Problem: \(\vec{e}_x \cdot \nu, \vec{e}_y \cdot \nu, \) and \(\vec{e}_z \cdot \nu \) are in the kernel of \(L. \)
Linear operator on the Scherk surfaces

\[L(f) = \Delta f + |A|^2 f \]

is associated to normal perturbations of the mean curvature. The mean curvature is invariant under translations.

- Problem: \(\vec{e}_x \cdot \nu, \vec{e}_y \cdot \nu, \) and \(\vec{e}_z \cdot \nu \) are in the kernel of \(L \).
- Partial solution: We can impose one symmetry: \(\vec{e}_z \cdot \nu \).
Linear operator on the Scherk surfaces

\[L(f) = \Delta f + |A|^2 f \]

is associated to normal perturbations of the mean curvature. The mean curvature is invariant under translations.

- Problem: \(\vec{e}_x \cdot \nu, \vec{e}_y \cdot \nu, \) and \(\vec{e}_z \cdot \nu \) are in the kernel of \(L. \)
- Partial solution: We can impose one symmetry: \(\vec{e}_z \cdot \nu. \)
- But, what do we do with \(\vec{e}_x \cdot \nu \) and \(\vec{e}_y \cdot \nu? \)
Linear operator on the Scherk surfaces

\[L(f) = \Delta f + |A|^2 f \]

is associated to normal perturbations of the mean curvature. The mean curvature is invariant under translations.

- **Problem:** \(\vec{e}_x \cdot \nu, \vec{e}_y \cdot \nu, \) and \(\vec{e}_z \cdot \nu \) are in the kernel of \(L. \)
- **Partial solution:** We can impose one symmetry: \(\vec{e}_z - \nu. \)
- **But, what do we do with** \(\vec{e}_x \cdot \nu \) and \(\vec{e}_y \cdot \nu ? \) Define

\[z_1 = \vec{e}_x \cdot \nu, \quad z_2 = \vec{e}_y \cdot \nu \]
We want exponential decay for f. We need a priori estimates for the linear problem on Σ.
We want exponential decay for f. We need a priori estimates for the linear problem on Σ.

Lemma (A priori estimates)

Let $0 < \gamma < 1$ and

1. $E : \Sigma \rightarrow \mathbb{R}$ with $\|e^{\gamma s} E\|_{\infty} \leq C$

2. f be a bounded solution to $\Delta f + |A|^2 f = E$ in Σ
Linear operator on the Scherk surfaces: a priori estimates

We want exponential decay for f. We need a priori estimates for the linear problem on Σ.

Lemma (A priori estimates)

Let $0 < \gamma < 1$ and

- $E : \Sigma \to \mathbb{R}$ with $\|e^{\gamma s} E\|_\infty \leq C$
- $\eta_0 : \Sigma \to \mathbb{R}$ a cut-off function
- f be a bounded solution to
 \[\Delta f + |A|^2 f = E \text{ in } \Sigma \]
 such that $\int_{\Sigma} f \eta_0 z_i = 0$, $i = 1, 2$
We want exponential decay for f. We need a priori estimates for the linear problem on Σ.

Lemma (A priori estimates)

Let $0 < \gamma < 1$ and

- $E : \Sigma \to \mathbb{R}$ with $\|e^{\gamma s} E\|_\infty \leq C$
- $\eta_0 : \Sigma \to \mathbb{R}$ a cut-off function
- f be a bounded solution to $\Delta f + |A|^2 f = E$ in Σ
- such that $\int_\Sigma f \eta_0 z_i = 0$, $i = 1, 2$

then

$$\|f\|_\infty \leq C\|e^{\gamma s} E\|_\infty,$$

$$|\nabla f| \leq C e^{-\gamma s}(\|e^{\gamma s} E\|_\infty),$$
Linear operator on the Scherk surfaces

- \(z_1 = \vec{e}_x \cdot \nu \), \(z_2 = \vec{e}_y \cdot \nu \)
- \(R > R_1 \) with \(R_1 \) large

Lemma (Existence)

Given \(E : \Sigma \to \mathbb{R} \), there is \(f \) such that

\[
\Delta f + |A|^2 f = E \text{ in } \Sigma_R
\]

\[
f = 0 \text{ on } \partial \Sigma_R
\]

\(\Sigma \) is the entire Scherk surface; \(\Sigma_R \) is \(\Sigma \) truncated at \(s = R \).
Linear operator on the Scherk surfaces

- \(z_1 = \tilde{e}_x \cdot \nu, \quad z_2 = \tilde{e}_y \cdot \nu \)
- \(R > R_1 \) with \(R_1 \) large
- \(0 < \gamma < 1 \)

Lemma (Existence)

Given \(E : \Sigma \to \mathbb{R} \) with \(\| e^{\gamma s} E \|_\infty \leq C \), there is \(f \) such that

\[
\Delta f + |A|^2 f = E \text{ in } \Sigma_R \\
f = 0 \text{ on } \partial \Sigma_R
\]

\(\Sigma \) is the entire Scherk surface; \(\Sigma_R \) is \(\Sigma \) truncated at \(s = R \).
Linear operator on the Scherk surfaces

- \(z_1 = \vec{e}_x \cdot \nu, \quad z_2 = \vec{e}_y \cdot \nu \)
- \(R > R_1 \) with \(R_1 \) large
- \(0 < \gamma < 1 \)
- \(\eta_0 : \Sigma \rightarrow \mathbb{R} \) a cut-off function

Lemma (Existence)

Given \(E : \Sigma \rightarrow \mathbb{R} \) with \(\| e^{\gamma s} E \|_\infty \leq C \), there are constants \(c_1 \) and \(c_2 \), there is \(f \) such that

\[
\Delta f + |A|^2 f = E + c_1 \eta_0 z_1 + c_2 \eta_0 z_2 \text{ in } \Sigma_R \\
f = 0 \text{ on } \partial \Sigma_R
\]

\(\Sigma \) is the entire Scherk surface; \(\Sigma_R \) is \(\Sigma \) truncated at \(s = R \).
Linear operator on the Scherk surfaces

- $z_1 = \vec{e}_x \cdot \nu$, $z_2 = \vec{e}_y \cdot \nu$
- $R > R_1$ with R_1 large
- $0 < \gamma < 1$
- $\eta_0 : \Sigma \rightarrow \mathbb{R}$ a cut-off function

Lemma (Existence)

Given $E : \Sigma \rightarrow \mathbb{R}$ with $\| e^{\gamma s} E \|_\infty \leq C$, there are constants c_1 and c_2, there is a unique f such that

$$\int_{\Sigma_R} f \eta_0 z_i = 0, \quad i = 1, 2$$

$$\Delta f + |A|^2 f = E + c_1 \eta_0 z_1 + c_2 \eta_0 z_2 \text{ in } \Sigma_R$$

$$f = 0 \text{ on } \partial \Sigma_R$$

Σ is the entire Scherk surface; Σ_R is Σ truncated at $s = R$.
Linear operator on the Scherk surfaces

- \(z_1 = \varepsilon_x \cdot \nu \), \(z_2 = \varepsilon_y \cdot \nu \)
- \(R > R_1 \) with \(R_1 \) large
- \(0 < \gamma < 1 \)
- \(\eta_0 : \Sigma \to \mathbb{R} \) a cut-off function

Lemma (Existence)

Given \(E : \Sigma \to \mathbb{R} \) with \(\| e^{\gamma s} E \|_{\infty} \leq C \), there are constants \(c_1 \) and \(c_2 \), there is a unique \(f \) such that

\[
\int_{\Sigma_R} f \eta_0 z_i = 0, \quad i = 1, 2
\]

\[
\Delta f + |A|^2 f = E + c_1 \eta_0 z_1 + c_2 \eta_0 z_2 \quad \text{in} \quad \Sigma_R
\]

\[
f = 0 \quad \text{on} \quad \partial\Sigma_R
\]

Moreover, \(|c_1|, |c_2|, \| f \|_{\infty} \leq C \| e^{\gamma s} E \|_{\infty} \)

\(\Sigma \) is the entire Scherk surface; \(\Sigma_R \) is \(\Sigma \) truncated at \(s = R \).
Achieving exponential decay

Solve on Σ_R, then let $R \rightarrow \infty$. We get a solution f on Σ.

\[|\nabla f| \sim e^{-\gamma s} \text{ and } |f| \leq C \]

On each wing, $\lim_{s \to \infty} f = \text{constant} L$

$f + c_1' z_1 + c_2' z_2$ has zero limit on two adjacent wings.

$f + c_1' z_1 + c_2' z_2 + \tilde{c}_1 \zeta_1 z_1 + \tilde{c}_2 \zeta_2 z_1$ has zero limit on all wings.
Achieving exponential decay

Solve on Σ_R, then let $R \to \infty$. We get a solution f on Σ.

$|\nabla f| \sim e^{-\gamma s}$ and $|f| \leq C$
Achieving exponential decay

Solve on Σ_R, then let $R \rightarrow \infty$. We get a solution f on Σ.

- $|\nabla f| \sim e^{-\gamma s}$ and $|f| \leq C$
- On each wing, $\lim_{s \rightarrow \infty} f = \text{constant } L_i$
Achieving exponential decay

Solve on Σ_R, then let $R \to \infty$. We get a solution f on Σ.

- $|\nabla f| \sim e^{-\gamma s}$ and $|f| \leq C$
- On each wing, $\lim_{s \to \infty} f = \text{constant } L_i$
- $f + c'_1 z_1 + c'_2 z_2$ has zero limit on two adjacent wings.
Achieving exponential decay

Solve on Σ_R, then let $R \to \infty$. We get a solution f on Σ.

- $|\nabla f| \sim e^{-\gamma s}$ and $|f| \leq C$
- On each wing, $\lim_{s \to \infty} f = \text{constant } L_i$
- $f + c'_1 z_1 + c'_2 z_2$ has zero limit on two adjacent wings.
- $f + c'_1 z_1 + c'_2 z_2 + \tilde{c}_1 \zeta_1 z_1 + \tilde{c}_2 \zeta_2 z_1$ has zero limit on all wings.

ζ_1 and ζ_2 are smooth cut-off functions on separate wings. $\zeta_i = 1$ for s large, $i = 1, 2$
Linear operator on the Scherk surfaces

Lemma
Given $E : \Sigma \rightarrow \mathbb{R}$ with $\| e^{\gamma s} E \|_{\infty} \leq C$, there are constants $c_1, c_2, \tilde{c}_1,$ and \tilde{c}_2, there is a function \tilde{f} such that

$$L \tilde{f} = E + \tilde{c}_1 L(\zeta_1 z_1) + \tilde{c}_2 L(\zeta_2 z_1) + c_1 \eta_0 z_1 + c_2 \eta_0 z_2 \text{ in } \Sigma$$

$$\lim_{s \rightarrow \infty} \tilde{f} = 0 \text{ on each wing}$$

$$|\nabla \tilde{f}| \leq C e^{-\gamma s} \| e^{\gamma s} E \|_{\infty}$$
Dislocations of the Scherk surface

We have to compensate for the four extra terms with dislocations of the Scherk surface.

\[\hat{L} \tilde{f} = E + \tilde{c}_1 L(\zeta_1 z_1) + \tilde{c}_2 L(\zeta_2 z_1) + c_1 \eta_0 z_1 + c_2 \eta_0 z_2 \]
Dislocations of the Scherk surface

\[
\tilde{Lf} = E + \tilde{c}_1 L(\zeta_1 z_1) + \tilde{c}_2 L(\zeta_2 z_1) + c_1 \eta_0 z_1 + c_2 \eta_0 z_2 \\
+ d_1 L(z_{trans}^1) + d_2 L(z_{trans}^2)
\]
Dislocations of the Scherk surface

\[\tilde{L}f = E + \tilde{c}_1 L(\zeta_1 z_1) + \tilde{c}_2 L(\zeta_2 z_1) + c_1 \eta_0 z_1 + c_2 \eta_0 z_2 \]
\[+ d_1 L(z^1_{trans}) + d_2 L(z^2_{trans}) + \theta_1 L(z^1_{rot}) + \theta_2 L(z^2_{rot}) \]
If you remember one thing...

The linear problem on the Scherk surfaces is well-studied [Kapouleas, 1997]. We can use it! For a construction to work, one “just” needs

- flexibility of the initial setting.
- solve the associated linear problem on all the non-Scherk pieces.

Setting up the fixed point theorem at the end is also well-documented.
An immersed configuration
The problem
The problem
The problem
The problem
The flexibility is still there

First unwind the bowtie to a segment $[s_-, s_+]$, $s_- < 0 < s_+$.

\[
\mathcal{L} f_d = 0, \\
 f_d(0) = 1, \quad \dot{f}_d(0) = 0
\]

Record the Dirichlet and Neumann data at the ends
The flexibility is still there

First unwind the bowtie to a segment \([s_-, s_+]\), \(s_- < 0 < s_+\).

\[
\mathcal{L} f_d = 0, \\
Q f_d(0) = 1, \quad \dot{f}_d(0) = 0
\]

Record the Dirichlet and Neumann data at the ends

\[
\mathcal{L} f_n = 0, \\
Q f_n(0) = 0, \quad \dot{f}_n(0) = 1
\]

Record the Dirichlet and Neumann data at the ends
The flexibility is still there

We can impose Dirichlet and Neumann defects

\[\text{iff } \det\left(\begin{array}{cc} d_2 & d_1 \\ n_2 & n_1 \end{array}\right) \neq 0 \]

\[\text{iff there are no nontrivial solutions to } Lf = 0 \text{ globally.} \]
The flexibility is still there

We can impose Dirichlet and Neumann defects

iff det \[
\begin{pmatrix}
 d_2 - d_1 & d_4 - d_3 \\
 n_2 - n_1 & n_4 - n_3
\end{pmatrix} \neq 0
\]
The flexibility is still there

We can impose Dirichlet and Neumann defects

- iff \(\det \begin{pmatrix} d_2 - d_1 & d_4 - d_3 \\ n_2 - n_1 & n_4 - n_3 \end{pmatrix} \neq 0 \)
- iff there are no nontrivial solution to \(\mathcal{L}f = 0 \) globally.
Remarks

- There is no guarantee that the Scherk angle, position, rotation are preserved.
Remarks

- There is no guarantee that the Scherk angle, position, rotation are preserved.
- We are using up all the degrees of freedom.
Remarks

- There is no guarantee that the Scherk angle, position, rotation are preserved.
- We are using up all the degrees of freedom.
- One can solve \((\Delta + |A|^2)f = E\) on \(\Sigma_R\) with

\[
\|f\|_{C^2,\alpha} \sim e^R \|E\|_{C^0,\alpha}
\]
Remarks

- There is no guarantee that the Scherk angle, position, rotation are preserved.
- We are using up all the degrees of freedom.
- One can solve \((\Delta + |A|^2)f = E\) on \(\Sigma_R\) with
 \[
 \|f\|_{C^{2,\alpha}} \sim e^R \|E\|_{C^{0,\alpha}}
 \]
- We are working on a Dirichlet to Neumann map to finish the construction.
The bowtie exists!
Immediate work and questions

Work in progress

- The Dirichlet to Neumann map is invertible for τ small.
Immediate work and questions

Work in progress

- The Dirichlet to Neumann map is invertible for τ small.
- Proof of the existence of the bowtie.
Immediate work and questions

Work in progress

- The Dirichlet to Neumann map is invertible for τ small.
- Proof of the existence of the bowtie.

Questions for you

- Extensions of the work? Related problems? Applications?
Thank you for your attention!