Homework 2 math520

Due: Friday Feb. 9

1. Let \(\{h_k\}_{k=1}^{\infty} \) be a sequence of vectors in Hilbert space \(H \).

a) If each \(h_k \) is outside the closed span of the other \(h_k \)'s, prove there exists a biorthogonal sequence to \(\{h_k\} \);

b) If \(\{h_k\} \) is a spanning set for \(H \) show that there is at most one biorthogonal sequence to \(\{h_k\} \).

2. Show there exist a polynomial \(g \) of degree \(n \) (i.e, in \(P_n \)) for which \(f(0) = \int_0^\infty f(s)g(s)e^{-s} \, ds \) for all \(f \in P_n \). Find the required \(g \) in the case \(n = 2 \).

3. Prove that the null space of a closed operator is closed.

4. Assume \(g \in C[0,1] \). Prove that \(g(x) \frac{d}{dx} \) is closeable.

5. On \(L^2(0,1) \) define \(Au = e^x u - au \), where \(a \) is a real constant. Describe the state of the operator (in words please) for different values of \(a \).

6. A sequence of bounded operators \(T_n : H \to H \) (\(H \) is a Hilbert space) goes to zero uniformly if \(\|T_n\| \to 0 \), strongly if \(\|T_n u\| \to 0 \) for all \(u \in H \), and weakly if \(< T_n u, v > \to 0 \) for all \(u, v \in H \). Show uniform convergence to zero implies strong convergence to zero and this implies weak convergence to zero and give examples to show the reverse implications do not hold.