1) Let \(a_n = \frac{n+2}{n} \). Prove directly from the definition of convergence of a sequence that \(a_n \to 1 \).

2) Let \(f : \mathbb{R} \setminus \{1\} \to \mathbb{R} \) by \(f(x) = \frac{x}{x-1} \). Determine whether \(f \) is one-to-one and/or onto.

3) Prove that the sequence \(\{a_n\} \) has a convergent subsequence where

\[
a_n = \frac{7n \sin n + 3 \cos^3 n^2}{n(1 + (-1)^n) + 1}.
\]

4) Let \(E = \{1/m + 1/n : n, m \in \mathbb{N}\} \).
 a) Find \(\inf(E) \) (and justify your answer)
 b) Prove that for any \(n \in \mathbb{N} \) that \(1/n \) is a limit point of \(E \).

5) Suppose \(\{a_k\} \) is a sequence of positive real numbers for which \(a_{k+1}/a_k \leq b \) for some \(b < 1 \). Prove that \(\sum a_k \) converges by showing that the sequence \(\{s_n\} \) of partial sums is contractive.

6) Suppose \(\{a_k\} \) is convergent and \(\{b_k\} \) diverges to \(+\infty \). Prove that \(\{a_k + b_k\} \) diverges to \(+\infty \).

 Here’s a start: Let \(M > 0 \). We (i.e. you) need to find positive integer \(N \) such that for \(n \geq N \), \(a_k + b_k \geq M \). First work on \(\{a_k\} \). For some \(B \geq 0 \) we have \(|a_k| \leq B \) for all \(k \).
(Why?) You finish the rest.