Instructions: Read the questions carefully and answer all parts of the questions.

1) (5 pt) Write out Taylor’s Formula (with the remainder) for \(f(x) = 1/x \) centered at \(a = 1 \) and \(n = 3 \). (So that the Taylor polynomial is third order, the remainder term is 4th order.)

2) (10 pt) Suppose that \(f \) is twice continuously differentiable on \(I = [-1, 1] \), \(f(0) = 0 \), \(f'(0) = 0 \) and \(f'' \geq 0 \) on \(I \). Prove that \(f(x) \geq 0 \) on \(I \). (Suggestion: prove by contradiction, using the MVT.)

3) (10 pt) State and prove Rolle’s Theorem.

4) (10 pt) Prove that \(f(x) = x^{1/2} \) is uniformly continuous on \((0, \infty)\).

5) (10 pt) Prove the product rule: If \(f \) and \(g \) are differentiable at \(x = a \) then \(fg \) is differentiable at \(a \) and \((fg)'(a) = f'(a)g(a) + f(a)g'(a) \).

6) Either prove or give a counterexample:
 a) If \(f \) is bounded then \(f \) is continuous.
 b) If \(f \) is continuous then \(f \) is differentiable.
 c) If \(|f| \) is differentiable, then \(f' \) is continuous.

7) (5pt) Let \(f(x) = x \sin(1/x) \) for \(x \neq 0 \) and define \(f(0) = 1 \). Prove \(f \) is discontinuous at 0.

8) (6pt) Let \(f(x) = x^3 - x^2 \sin x \).
 a) Prove (using the appropriate definition) that \(\lim_{x \to \infty} f(x) = \infty \).
 b) Prove that \(f : \mathbb{R} \to \mathbb{R} \) is surjective. (You can assume that \(\lim_{x \to -\infty} f(x) = -\infty \).)

9) (6pts) Let \(f(x) = x \cos(x) - x \).
 a) Use the Mean Value Theorem to prove \(f \) is strictly monotone decreasing on \([-\pi, \pi]\).
 b) Prove \(f^{-1} \) is continuous on \([0, 2\pi]\), differentiable on \((0, 2)\) and find a formula for the derivative of \(f^{-1}(y) \) for \(y \in (0, 2\pi) \).

10) (6pts) Let \(f(x) = x^{1/3} \). Prove \(f \) is uniformly continuous on \(E = (0, 100) \), but does not satisfy the Lipschitz condition on \(E \).