Recent results on the edit distance of graphs

Ryan Martin

Iowa State University

University of British Columbia
This talk is based on joint work with:

Tracy McKay
ISU

József Balogh
Illinois

Maria Axenovich
ISU

André Kezdy
Louisville
Another view of a classical problem

Suppose we have an n-vertex graph G.
Another view of a classical problem

Suppose we have an n-vertex graph G.

We want to compute the fewest number of edge-additions plus edge-deletions to apply to G so that the resulting graph G' has no triangles.

Theorem (Mantel, 1907)

If an n-vertex graph G' has no triangles, then the number of edges G' has is at most $\left\lfloor \frac{n^2}{4} \right\rfloor$.

This bound is only achieved if G' is complete bipartite.
Another view of a classical problem

Suppose we have an n-vertex graph G.

We want to compute the fewest number of edge-additions plus edge-deletions to apply to G so that the resulting graph G' has no triangles.

Theorem (Mantel, 1907)

If an n-vertex graph G' has no triangles, then the number of edges G' has is at most $\left\lfloor \frac{n^2}{4} \right\rfloor$. This bound is only achieved if G' is complete bipartite.
Another view of a classical problem

Suppose we have an n-vertex graph G.

We want to compute the fewest number of edge-additions plus edge-deletions to apply to G so that the resulting graph G' has no triangles.

Theorem (Mantel, 1907)

If an n-vertex graph G' has no triangles, then the number of edges G' has is at most $\left\lfloor \frac{n^2}{4} \right\rfloor$. This bound is only achieved if G' is complete bipartite.
So, if G were the complete graph, it would require at least

$$\binom{n}{2} - \left\lfloor \frac{n^2}{4} \right\rfloor$$

edge-deletions.
So, if G were the complete graph, it would require at least

$$\binom{n}{2} - \lfloor n^2 / 4 \rfloor = \binom{\lfloor n/2 \rfloor}{2} + \binom{\lceil n/2 \rceil}{2}$$

edge-deletions.
So, if G were the complete graph, it would require at least

$$\binom{n}{2} - \lfloor n^2/4 \rfloor = \left(\left\lfloor \frac{n}{2} \right\rfloor \right)^2 + \left(\left\lceil \frac{n}{2} \right\rceil \right)^2$$

edge-deletions.

But for any graph G, we can delete at most this many edges and remain triangle-free:
So, if G were the complete graph, it would require at least

$$\binom{n}{2} - \lfloor n^2/4 \rfloor = \binom{\lfloor n/2 \rfloor}{2} + \binom{\lceil n/2 \rceil}{2}$$

edge-deletions.

But for any graph G, we can delete at most this many edges and remain triangle-free:

Partition the vertices in half and delete edges inside each part.
Results on triangles

So, the maximum number of changes required to remove triangles from n-vertex graph G is

$$\left(\left\lfloor \frac{n}{2} \right\rfloor \right)^2 + \left(\left\lceil \frac{n}{2} \right\rceil \right)^2.$$

This is achieved by $G = K_n$.
Results on triangles

So, the maximum number of changes required to remove triangles from \(n \)-vertex graph \(G \) is

\[
\left(\left\lfloor \frac{n}{2} \right\rfloor \right)^2 + \left(\left\lceil \frac{n}{2} \right\rceil \right)^2 \sim \frac{1}{2} \left(\frac{n^2}{2} \right).
\]

This is achieved by \(G = K_n \).
Results on triangles

So, the maximum number of changes required to remove triangles from \(n \)-vertex graph \(G \) is

\[
\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + \left(\left\lceil \frac{n}{2} \right\rceil \right) \sim \frac{1}{2} \left(\frac{n^2}{2} \right).
\]

This is achieved by \(G = K_n \).

Instead of triangles, we can generalize the previous analysis to forbid copies of \(K_{\ell + 1} \), \(\ell \geq 2 \).
Results on triangles

Instead of triangles, we can generalize the previous analysis to forbid copies of $K_{\ell+1}$, $\ell \geq 2$.

Theorem (Turán, 1941)

If an n-vertex graph G' has no copy of $K_{\ell+1}$, then the number of edges G' has is at most

$$\left(1 - \frac{1}{\ell}\right) \frac{n^2}{2}.$$

*This bound is only achieved if G' is complete ℓ-partite and $\ell \mid n$.

Proof:

[Proof details here]
Results on triangles

Instead of triangles, we can generalize the previous analysis to forbid copies of $K_{\ell+1}$, $\ell \geq 2$.

Theorem (Turán, 1941)

If an n-vertex graph G' has no copy of $K_{\ell+1}$, then the number of edges G' has is at most

$$
\left(1 - \frac{1}{\ell} \right) \frac{n^2}{2}.
$$

This bound is only achieved if G' is complete ℓ-partite and $\ell \mid n$.

So, the maximum number of changes required to remove copies of $K_{\ell+1}$ from an n-vertex graph G is

$$
\sim \frac{n^2}{2\ell}.
$$
Results on triangles

Instead of triangles, we can generalize the previous analysis to forbid copies of $K_{\ell+1}$, $\ell \geq 2$.

Theorem (Turán, 1941)

If an n-vertex graph G' has no copy of $K_{\ell+1}$, then the number of edges G' has is at most

$$\left(1 - \frac{1}{\ell}\right) \frac{n^2}{2}.$$

This bound is only achieved if G' is complete ℓ-partite and $\ell \mid n$.

So, the maximum number of changes required to remove copies of $K_{\ell+1}$ from an n-vertex graph G is

$$\sim \frac{n^2}{2\ell} \sim \frac{1}{\ell} \binom{n}{2}.$$

This is achieved by $G = K_n$.
Given: Labeled graphs G and G', each on n vertices.
Edit Distance between graphs

Given: Labeled graphs G and G', each on n vertices.

Definition

The **EDIT DISTANCE BETWEEN G AND G'**

$$\text{Dist}(G, G') = |E(G) \triangle E(G')|$$

is the size of the symmetric difference of the edge sets.
Given: Labeled graphs G and G', each on n vertices.

Definition

The **EDIT DISTANCE BETWEEN G AND G'**

$$\text{Dist}(G, G') = |E(G) \Delta E(G')|$$

is the size of the symmetric difference of the edge sets.

That is, it is the minimum number of edge-additions plus edge-deletions to transform G into G'.
Given: A labeled graph G and a graph property \mathcal{P}.

A GRAPH PROPERTY is a set of graphs.
Given: A labeled graph G and a graph property \mathcal{P}.
A **GRAPH PROPERTY** is a set of graphs.

Definition

The **EDIT DISTANCE FROM G TO \mathcal{P}**

$$\text{Dist}(G, \mathcal{P}) = \min \{ \text{Dist}(G, G') : G' \in \mathcal{P} \}$$

is the least edit distance of G to a graph in \mathcal{P}.
Given: A labeled graph G and a graph property \mathcal{P}.

A **GRAPH PROPERTY** is a set of graphs.

Definition

The **EDIT DISTANCE FROM G TO \mathcal{P}**

$$\text{Dist}(G, \mathcal{P}) = \min \left\{ \text{Dist}(G, G') : G' \in \mathcal{P} \right\}$$

is the least edit distance of G to a graph in \mathcal{P}.

That is, it is the minimum number of edge-additions plus edge-deletions to transform G into a member of \mathcal{P}.
Given: A natural number n and a graph property \mathcal{P}.
Extremal Edit Distance

Given: A natural number n and a graph property \mathcal{P}.

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>The EDIT DISTANCE FROM \mathcal{P}</td>
</tr>
</tbody>
</table>

\[
\text{Dist}(n, \mathcal{P}) = \max \left\{ \text{Dist}(G, \mathcal{P}) : |V(G)| = n \right\}
\]

is the maximum edit distance of an n-vertex graph to a graph in \mathcal{P}.
Extremal Edit Distance

Given: A natural number n and a graph property \mathcal{P}.

Definition

The **EDIT DISTANCE FROM \mathcal{P}**

$$\text{Dist}(n, \mathcal{P}) = \max \{ \text{Dist}(G, \mathcal{P}) : |V(G)| = n \}$$

is the maximum edit distance of an n-vertex graph to a graph in \mathcal{P}.

That is, it is the maximum, over all n-vertex graphs, G, of the minimum number of edge-additions plus edge-deletions to transform G into a member of \mathcal{P}.
Given: A natural number n and a hereditary graph property \mathcal{H}.

Definition

The **EDIT DISTANCE FROM** \mathcal{H}

$$\text{Dist}(n, \mathcal{H}) = \max \{ \text{Dist}(G, \mathcal{H}) : |V(G)| = n \}$$

is the maximum edit distance of an n-vertex graph to a graph in \mathcal{H}.

That is, it is the maximum, over all n-vertex graphs, G, of the minimum number of edge-additions plus edge-deletions to transform G into a member of \mathcal{H}.

A hereditary property is one that is preserved under vertex-deletion.

Ryan Martin (Iowa State U.)
Extremal Edit Distance

Given: A natural number n and a hereditary graph property \mathcal{H}.

Definition

The **EDIT DISTANCE FROM \mathcal{H}**

$$\text{Dist}(n, \mathcal{H}) = \max \{ \text{Dist}(G, \mathcal{H}) : |V(G)| = n \}$$

is the maximum edit distance of an n-vertex graph to a graph in \mathcal{H}.

That is, it is the maximum, over all n-vertex graphs, G, of the minimum number of edge-additions plus edge-deletions to transform G into a member of \mathcal{H}.

A **HEREDITARY PROPERTY** is one that is preserved under vertex-deletion.
A **HEREDITARY PROPERTY**, \mathcal{H}, of graphs is one that holds under the deletion of vertices.
A **HEREDITARY PROPERTY**, \(\mathcal{H} \), of graphs is one that holds under the deletion of vertices.

I.e., if \(G \in \mathcal{H} \), then every induced subgraph of \(G \) is in \(\mathcal{H} \).
A hereditary property, \mathcal{H}, of graphs is one that holds under the deletion of vertices. I.e., if $G \in \mathcal{H}$, then every induced subgraph of G is in \mathcal{H}.

A 5-cycle as a subgraph, but not an induced graph.

A 5-cycle as a subgraph, but not an INDUCED graph.
A **hereditary property**, \(H \), of graphs is one that holds under the deletion of vertices.

I.e., if \(G \in H \), then every induced subgraph of \(G \) is in \(H \).

Examples:
- Planar graphs.
- Line graphs of bipartite graphs.
- Chordal graphs: graphs with no chordless cycle of length \(\geq 4 \).
- Perfect graphs: \(\chi = \omega \) for all induced subgraphs.
- Forb(\(H \)): graphs with no induced copy of \(H \).

\(<\text{Forb}(H) is a principal hereditary property.>\)
A **hereditary property**, \(\mathcal{H} \), of graphs is one that holds under the deletion of vertices.

I.e., if \(G \in \mathcal{H} \), then every induced subgraph of \(G \) is in \(\mathcal{H} \).

Examples:

- Planar graphs.
- Line graphs of bipartite graphs.
A hereditary property, \mathcal{H}, of graphs is one that holds under the deletion of vertices. I.e., if $G \in \mathcal{H}$, then every induced subgraph of G is in \mathcal{H}.

Examples:
- Planar graphs.
- Line graphs of bipartite graphs.
- Chordal graphs
A **hereditary property**, \(\mathcal{H} \), of graphs is one that holds under the deletion of vertices.

I.e., if \(G \in \mathcal{H} \), then every induced subgraph of \(G \) is in \(\mathcal{H} \).

Examples:
- Planar graphs.
- Line graphs of bipartite graphs.
- Chordal graphs: graphs with no chordless cycle of length \(\geq 4 \).
A **HEREDITARY PROPERTY**, \mathcal{H}, of graphs is one that holds under the deletion of vertices. I.e., if $G \in \mathcal{H}$, then every induced subgraph of G is in \mathcal{H}.

Examples:
- Planar graphs.
- Line graphs of bipartite graphs.
- Chordal graphs: graphs with no chordless cycle of length ≥ 4.
- Perfect graphs
A hereditary property, \mathcal{H}, of graphs is one that holds under the deletion of vertices. I.e., if $G \in \mathcal{H}$, then every induced subgraph of G is in \mathcal{H}.

Examples:
- Planar graphs.
- Line graphs of bipartite graphs.
- Chordal graphs: graphs with no chordless cycle of length ≥ 4.
- Perfect graphs: $\chi = \omega$ for all induced subgraphs.
A HEREDITARY PROPERTY, \mathcal{H}, of graphs is one that holds under the deletion of vertices.

I.e., if $G \in \mathcal{H}$, then every induced subgraph of G is in \mathcal{H}.

Examples:
- Planar graphs.
- Line graphs of bipartite graphs.
- Chordal graphs: graphs with no chordless cycle of length ≥ 4.
- Perfect graphs: $\chi = \omega$ for all induced subgraphs.
- $\text{Forb}(H)$
A **hereditary property**, \(\mathcal{H} \), of graphs is one that holds under the deletion of vertices. I.e., if \(G \in \mathcal{H} \), then every induced subgraph of \(G \) is in \(\mathcal{H} \).

Examples:
- Planar graphs.
- Line graphs of bipartite graphs.
- Chordal graphs: graphs with no chordless cycle of length \(\geq 4 \).
- Perfect graphs: \(\chi = \omega \) for all induced subgraphs.
- \(\text{Forb}(H) \): graphs with no **induced** copy of \(H \).
A **hereditary property**, \mathcal{H}, of graphs is one that holds under the deletion of vertices.

I.e., if $G \in \mathcal{H}$, then every induced subgraph of G is in \mathcal{H}.

Examples:
- Planar graphs.
- Line graphs of bipartite graphs.
- Chordal graphs: graphs with no chordless cycle of length ≥ 4.
- Perfect graphs: $\chi = \omega$ for all induced subgraphs.
- $\text{Forb}(H)$: graphs with no **induced** copy of H. ($\text{Forb}(H)$ is a **principal hereditary property**.)
A **hereditary property**, \(\mathcal{H} \), of graphs is one that holds under the deletion of vertices.

Examples:
- Planar graphs.
- Line graphs of bipartite graphs.
- Chordal graphs: graphs with no chordless cycle of length \(\geq 4 \).
- Perfect graphs: \(\chi = \omega \) for all induced subgraphs.
- \(\text{Forb}(H) \): graphs with no **induced** copy of \(H \).

 (\(\text{Forb}(H) \) is a **principal hereditary property**.)

For the rest of this talk, all of our hereditary properties are principal; i.e.,

\[
\mathcal{H} = \text{Forb}(H), \text{ for some graph } H.
\]
Recall Dr. Raggi’s dissertation:

Definition

For a configuration, F and a $\{0, 1\}$-matrix M, if there is a representation (permutation of the rows and columns) of F that is a submatrix of M, then we write $F \prec M$.

Ryan Martin (Iowa State U.)
The edit distance of graphs
26 July 2011 10 / 24
Recall Dr. Raggi’s dissertation:

Definition

For a configuration, F and a $\{0,1\}$-matrix M, if there is a representation (permutation of the rows and columns) of F that is a submatrix of M, then we write $F \preceq M$.

Definition

Let I_r be the $r \times r$ identity matrix, I_r^c be its complement and T_r be the $r \times (r + 1)$ “tower matrix”.

\[
P_r(a, b, c) \overset{\text{def}}{=} I_r \times \cdots \times I_r \times I_r^c \times \cdots \times I_r^c \times T_r \times \cdots \times T_r.
\]

\[\begin{array}{cccc}
\text{a times} & \text{b times} & \text{c times}
\end{array}\]
Recall $X(F)$

Let F be a configuration and let $a, b, c \in \mathbb{N}$ have the property that, for all $r \in \mathbb{N}$, $F \not\triangleleft P_r(a, b, c)$.

But for any combination $a', b', c' \in \mathbb{N}$ such that $a' + b' + c' > a + b + c$, then there is an r such that $F \triangleleft P_r(a', b', c')$.

The quantity $a + b + c$ is $X(F)$.

$$P_r(a, b, c) \overset{\text{def}}{=} \underbrace{I_r \times \cdots \times I_r}_{a \text{ times}} \times \underbrace{I_r^c \times \cdots \times I_r^c}_{b \text{ times}} \times \underbrace{T_r \times \cdots \times T_r}_{c \text{ times}}.$$
Recall $X(F)$

Let F be a configuration and let $a, b, c \in \mathbb{N}$ have the property that, for all $r \in \mathbb{N}$, $F \not\prec P_r(a, b, c)$.

But for ANY combination $a', b', c' \in \mathbb{N}$ such that $a' + b' + c' > a + b + c$, then there is an r such that $F \prec P_r(a', b', c')$.

The quantity $a + b + c$ is $X(F)$.
A useful parameter

Let $\mathcal{H} = \text{Forb}(H)$ and let $a, c \in \mathbb{N}$ have the property that $V(H)$ cannot be partitioned into a set of a independent sets and c cliques.

But $V(H)$ can be partitioned into ANY combination of $a + c + 1$ independent sets and cliques.
A useful parameter

Let $\mathcal{H} = \text{Forb}(H)$ and let $a, c \in \mathbb{N}$ have the property that $V(H)$ cannot be partitioned into a set of a independent sets and c cliques.

But $V(H)$ can be partitioned into ANY combination of $a + c + 1$ independent sets and cliques.

The quantity $a + c + 1$ is the **binary chromatic number**, $\chi_B(H)$. (It is also called the **colouring number**, $\tau(H)$.)
A useful parameter

Let $\mathcal{H} = \text{Forb}(H)$ and let $a, c \in \mathbb{N}$ have the property that $V(H)$ cannot be partitioned into a set of a independent sets and c cliques.

But $V(H)$ can be partitioned into ANY combination of $a + c + 1$ independent sets and cliques.

The quantity $a + c + 1$ is the **BINARY CHROMATIC NUMBER**, $\chi_B(H)$. (It is also called the **COLORING NUMBER**, $\tau(H)$.)

Theorem (Axenovich-Kézdy-M., 2008)

Let $\mathcal{H} = \text{Forb}(H)$ for some fixed graph H which has coloring number $\tau(H)$,

$$\text{Dist}(n, \text{Forb}(H)) \geq \frac{1}{2(\chi_B(H) - 1)} \binom{n}{2} - o(n^2).$$
A useful parameter

Let $\mathcal{H} = \text{Forb}(H)$ and let $a, c \in \mathbb{N}$ have the property that $V(H)$ cannot be partitioned into a set of a independent sets and c cliques.

But $V(H)$ can be partitioned into ANY combination of $a + c + 1$ independent sets and cliques.

The quantity $a + c + 1$ is the **BINARY CHROMATIC NUMBER**, $\chi_B(H)$. (It is also called the **COLO(U)RING NUMBER**, $\tau(H)$.)

Theorem (Axenovich-Kézdy-M., 2008)

Let $\mathcal{H} = \text{Forb}(H)$ for some fixed graph H which has coloring number $\tau(H)$,

$$\text{Dist}(n, \text{Forb}(H)) \geq \frac{1}{2(\chi_B(H) - 1)} \binom{n}{2} - o(n^2).$$

Moreover, this holds with equality if H is self-complementary.
An example: 5-cycle

We will compute $\chi_B(C_5)$, the 5-cycle.
An example: 5-cycle

We will compute $\chi_B(C_5)$, the 5-cycle.

Let us consider all (a, c) such that $a + c = 3$:

The 5-cycle can be partitioned into 3 independent sets and 0 cliques.
An example: 5-cycle

We will compute $\chi_B(C_5)$, the 5-cycle.

Let us consider all (a, c) such that $a + c = 3$:

The 5-cycle can be partitioned into 2 independent sets and 1 cliques.
An example: 5-cycle

We will compute $\chi_B(C_5)$, the 5-cycle.

Let us consider all (a, c) such that $a + c = 3$:

The 5-cycle can be partitioned into 1 independent sets and 2 cliques.
An example: 5-cycle

We will compute $\chi_B(C_5)$, the 5-cycle.

Let us consider all (a, c) such that $a + c = 3$:

The 5-cycle can be partitioned into 0 independent sets and 3 cliques.
An example: 5-cycle

We will compute $\chi_B(C_5)$, the 5-cycle.

Let us consider all (a, c) such that $a + c = 3$:

The 5-cycle can be partitioned into 0 independent sets and 3 cliques.

So, $\chi_B(C_5) \leq 3$.
An example: 5-cycle

We will compute $\chi_B(C_5)$, the 5-cycle.

So, $\chi_B(C_5) \leq 3$.

But it cannot be partitioned into, say, 2 independent sets and 0 cliques.
An example: 5-cycle

We will compute $\chi_B(C_5)$, the 5-cycle.

So, $\chi_B(C_5) \leq 3$.

But it cannot be partitioned into, say, 2 independent sets and 0 cliques.

So, $\chi_B(C_5) \geq 3$.
An example: 5-cycle

We will compute $\chi_B(C_5)$, the 5-cycle.

So, $\chi_B(C_5) = 3$.

But it cannot be partitioned into, say, 2 independent sets and 0 cliques.

So, $\chi_B(C_5) = 3$.
Edit distance for C_5

Since $\chi_B(C_5) = 3$, and C_5 is self-complementary, the theorem gives

$$\text{Dist}(n, \text{Forb}(C_5)) = \frac{1}{2(\chi_B(H) - 1)} \binom{n}{2} - o(n^2).$$
Since $\chi_B(C_5) = 3$, and C_5 is self-complementary, the theorem gives

$$\text{Dist}(n, \text{Forb}(C_5)) = \frac{1}{2 \cdot 2 \binom{n}{2}} - o(n^2).$$
Edit distance for C_5

Since $\chi_B(C_5) = 3$, and C_5 is self-complementary, the theorem gives

$$\text{Dist}(n, \text{Forb}(C_5)) = \frac{1}{4} \binom{n}{2} - o(n^2).$$
Edit distance for C_5

Since $\chi_B(C_5) = 3$, and C_5 is self-complementary, the theorem gives

$$\text{Dist}(n, \text{Forb}(C_5)) = \frac{1}{4} \binom{n}{2} - o(n^2).$$

Normalize and take the limit:

$$\lim_{n \to \infty} \frac{\text{Dist}(n, \text{Forb}(H))}{\binom{n}{2}} = \frac{1}{4} - o(1).$$
Edit distance for C_5

Since $\chi_B(C_5) = 3$, and C_5 is self-complementary, the theorem gives

$$\text{Dist}(n, \text{Forb}(C_5)) = \frac{1}{4} \binom{n}{2} - o(n^2).$$

Normalize and take the limit:

$$\lim_{n \to \infty} \text{Dist}(n, \text{Forb}(H))/\binom{n}{2} = \frac{1}{4}.$$

We denote

$$d^*(\mathcal{H}) \overset{\text{def}}{=} \lim_{n \to \infty} \text{Dist}(n, \mathcal{H})/\binom{n}{2}.$$
Edit distance for C_5

$$d^*(\mathcal{H}) \overset{\text{def}}{=} \lim_{n \to \infty} \frac{\text{Dist}(n, \mathcal{H})}{\binom{n}{2}}.$$

This $d^*(\mathcal{H})$ is the quantity we want to compute.

It’s the proportion of pairs that need to be changed, in the worst case.
Let $G_{n,p}$ denote the Erdős-Rényi random graph:

I.e., there are n vertices and each edge is present, independently, with probability p.

Theorem (Alon-Stav, 2008)
For every hereditary property, H, there exists a $p^* = p^*(H) \in [0,1]$ such that
$$d^*(H) = \lim_{n \to \infty} \frac{\text{Dist}(G_{n,p}, H)}{n^2}.$$

Theorem (Balogh-M., 2008)
For every hereditary property, H, and every $p \in [0,1]$, if $g_H(p) = \lim_{n \to \infty} \frac{\text{Dist}(G_{n,p}, H)}{n^2}$

then it is also true that $g_H(p) = \lim_{n \to \infty} \max \left\{ \frac{\text{Dist}(G, H)}{n^2} : |V(G)| = n, |E(G)| = p(n^2) \right\} / n^2$.

Roughly, the hardest density-p-graph to edit is the random graph.
Let $G_{n,p}$ denote the Erdős-Rényi random graph:

I.e., there are n vertices and each edge is present, independently, with probability p.

Theorem (Alon-Stav, 2008)

For every hereditary property, \mathcal{H}, there exists a $p^* = p^*(\mathcal{H}) \in [0,1]$ such that

$$d^*(\mathcal{H}) = \lim_{n \to \infty} \frac{\text{Dist}(G_{n,p^*}, \mathcal{H})}{\binom{n}{2}}.$$

(The expression $\text{Dist}(G_{n,p^*}, \mathcal{H})$ is tightly concentrated about the mean, so the right-hand side is well-defined.)
Understanding d^*

Theorem (Alon-Stav, 2008)

For every hereditary property, \mathcal{H}, there exists a $p^ = p^*(\mathcal{H}) \in [0, 1]$ such that*

$$d^*(\mathcal{H}) = \lim_{n \to \infty} \frac{\text{Dist}(G_n, p^*, \mathcal{H})}{\binom{n}{2}}.$$

Theorem (Balogh-M., 2008)

For every hereditary property, \mathcal{H}, and every $p \in [0, 1]$, if

$$g_{\mathcal{H}}(p) = \lim_{n \to \infty} \frac{\text{Dist}(G_n, p, \mathcal{H})}{\binom{n}{2}}$$

then it is also true that

$$g_{\mathcal{H}}(p) = \lim_{n \to \infty} \max \left\{ \text{Dist}(G, \mathcal{H}) : |V(G)| = n, |E(G)| = p\binom{n}{2} \right\} / \binom{n}{2}.$$
Understanding d^*

Theorem (Balogh-M., 2008)

For every hereditary property, \mathcal{H}, and every $p \in [0, 1]$, if

$$g_{\mathcal{H}}(p) = \lim_{n \to \infty} \frac{\text{Dist} (G_{n,p}, \mathcal{H})}{(n^2)}$$

then it is also true that

$$g_{\mathcal{H}}(p) = \lim_{n \to \infty} \max \left\{ \text{Dist} (G, \mathcal{H}) : |V(G)| = n, |E(G)| = p \binom{n}{2} \right\} / \binom{n}{2}.$$

Roughly, the hardest density-p graph to edit is the random graph.
Properties of $g_{\text{Forb}}(H)(p)$

Continuous and concave down.

$g_{\text{Forb}}(H)(p) = \frac{1}{2}(\chi_B(H) - 1)$.

Achieves its maximum (p^*, d^*) for some $p^* \in [0, 1]$.

If H is neither complete nor empty, then $g_{\text{Forb}}(H)(0) = g_{\text{Forb}}(H)(1) = 0$.

For any rational $r \in [0, 1]$, there is an H, such that $p^*(\text{Forb}(H)) = r$.

There is an irrational $q \in [0, 1]$ and an H, such that $p^*(\text{Forb}(H)) = q$.
Properties of $g_{Forb(H)}(p)$

- Continuous and concave down.
The Edit Distance Function

Properties of $g_{\text{Forb}}(H)(p)$

- Continuous and concave down.
- $g_{\text{Forb}}(H)\left(\frac{1}{2}\right) = \frac{1}{2(\chi_B(H) - 1)}$.

Theorem (Balogh-M., 2008)

Ryan Martin (Iowa State U.)
Properties of $g_{\text{Forb}(H)}(p)$

- Continuous and concave down.
- $g_{\text{Forb}(H)}\left(\frac{1}{2}\right) = \frac{1}{2(\chi_B(H) - 1)}$.
- Achieves its maximum (p^*, d^*) for some $p^* \in [0, 1]$.

Theorem (Balogh-M., 2008)

Ryan Martin (Iowa State U.)
The Edit Distance Function

Properties of $g_{\text{Forb}}(H)(p)$

- Continuous and concave down.
- $g_{\text{Forb}}(H)\left(\frac{1}{2}\right) = \frac{1}{2(\chi_B(H) - 1)}$.
- Achieves its maximum (p^*, d^*) for some $p^* \in [0, 1]$.
- If H is neither complete nor empty, then $g_{\text{Forb}}(H)(0) = g_{\text{Forb}}(H)(1) = 0$.
The Edit Distance Function

Properties of $g_{\text{Forb}(H)}(p)$

- Continuous and concave down.

$$g_{\text{Forb}(H)} \left(\frac{1}{2} \right) = \frac{1}{2(\chi_B(H) - 1)}.$$

- Achieves its maximum (p^*, d^*) for some $p^* \in [0, 1]$.

- If H is neither complete nor empty, then $g_{\text{Forb}(H)}(0) = g_{\text{Forb}(H)}(1) = 0$.

- For any rational $r \in [0, 1]$, there is an H, such that $p^*(\text{Forb}(H)) = r$.

Theorem (Balogh-M., 2008)

$$p^*(\text{Forb}(K_a + E_b)) = \frac{a-1}{a+b-1} \quad d^*(\text{Forb}(K_a + E_b)) = \frac{1}{a+b-1}.$$
The Edit Distance Function

Properties of $g_{\text{Forb}(H)}(p)$

- Continuous and concave down.
- \(g_{\text{Forb}(H)} \left(\frac{1}{2} \right) = \frac{1}{2(\chi_B(H) - 1)}. \)
- Achieves its maximum \((p^*, d^*)\) for some \(p^* \in [0, 1]\).
- If \(H\) is neither complete nor empty, then \(g_{\text{Forb}(H)}(0) = g_{\text{Forb}(H)}(1) = 0\).
- For any rational \(r \in [0, 1]\), there is an \(H\), such that \(p^*(\text{Forb}(H)) = r\).
- There is an irrational \(q \in [0, 1]\) and an \(H\), such that \(p^*(\text{Forb}(H)) = q\).

Theorem (Balogh-M., 2008)

\[p^*(\text{Forb}(K_{3,3})) = \sqrt{2} - 1 \quad d^*(\text{Forb}(K_{3,3})) = 3 - 2\sqrt{2}. \]
Example: C_t

Theorem (Marchant-Thomason, 2010)

$$g_{\text{Forb}}(C_4)(p) = p(1 - p) \quad d^*_{\text{Forb}}(C_4) = \frac{1}{4}.$$
Example: C_t

Theorem (Marchant, 2010++)

$$g_{\text{Forb}}(C_5)(p) = \min \left\{ \frac{p}{2}, \frac{1 - p}{2} \right\} \quad d^*_{\text{Forb}}(C_5) = \frac{1}{4}.$$
Example: C_t

Theorem (M., 2010+)

$$g_{\text{Forb}(C_6)}(p) = \min \left\{ p(1 - p), \frac{1 - p}{2} \right\} \quad d^*_{\text{Forb}(C_6)} = \frac{1}{4}.$$
Example: C_t

Theorem (Marchant, 2010++)

$$g_{\text{Forb}}(C_7)(p) = \min \left\{ \frac{p}{2}, \frac{p(1-p)}{1+p}, \frac{1-p}{3} \right\} \quad d^*_\text{Forb}(C_7) = 3 - 2\sqrt{2}. $$
Example: C_t

Theorem (M., 2010+)

$$g_{\text{Forb}}(C_8)(p) = \min \left\{ \frac{p(1 - p)}{1 + p}, \frac{1 - p}{3} \right\} \quad d^*_{\text{Forb}}(C_8) = 3 - 2\sqrt{2}.$$
Example: C_t

Theorem (M., 2010+)

$$g_{\text{Forb}}(C_9)(p) = \min \left\{ \frac{p}{2}, \frac{1-p}{4} \right\} \quad d^*_{\text{Forb}}(C_9) = \frac{1}{6}. $$
Example: C_t

Theorem (M., 2010+)

\[
g_{\text{Forb}(C_{10})}(p) = \min \left\{ \frac{p(1 - p)}{1 + 2p}, \frac{1 - p}{4} \right\} \\
d^*_{\text{Forb}(C_{10})} = \frac{2 - \sqrt{3}}{2}.
\]
Example: H_9

Theorem (M., 2010+)

$$g_{\text{Forb}}(H_9)(p) = \min \left\{ \frac{p}{3}, \frac{p}{1 + 4p}, \frac{1 - p}{2} \right\}$$

$$d^*_{\text{Forb}}(K_{2,3}) = \frac{7 - \sqrt{17}}{16}.$$
Example: $K_{2,t}$

Theorem (Marchant-Thomason, 2010)

$$g_{\text{Forb}(K_{2,2})}(p) = p(1 - p) \quad d^*_{\text{Forb}(K_{2,2})} = \frac{1}{4}.$$
Example: $K_{2,t}$

Theorem (M.-McKay, 2010++)

$$g_{\text{Forb}}(K_{2,3})(p) = \min \left\{ p(1-p), \frac{1-p}{2} \right\}$$

$$d^*_{\text{Forb}}(K_{2,3}) = \frac{1}{4}.$$
Example: $K_{2,t}$

Theorem (M.-McKay, 2010++)

$$g_{\text{Forb}}(K_{2,4})(p) = \min \left\{ p(1 - p), \frac{1 + 7p}{15}, \frac{1 - p}{3} \right\}$$

$$d^*_{\text{Forb}}(K_{2,4}) = \frac{2}{9}.$$
A CRG from an SRG

The special editing recipe (called a **COLORED REGULARITY GRAPH (CRG)**) is derived from a particular **STRONGLY REGULAR GRAPH (SRG)**.
A CRG from an SRG

The special editing recipe (called a **COLORED REGULARITY GRAPH (CRG)**) is derived from a particular **STRONGLY REGULAR GRAPH (SRG)**.

The SRG is the generalized quadrangle \(GQ(2, 2) \). It has the following properties:

- has 15 vertices,
- is regular of degree 6,
- each pair of adjacent vertices have exactly 1 common neighbor, and
- each pair of nonadjacent vertices have exactly 3 common neighbors.
A CRG from an SRG

The special editing recipe (called a **colored regularity graph (CRG)**) is derived from a particular **strongly regular graph (SRG)**.

The SRG is the generalized quadrangle $GQ(2, 2)$. It has the following properties:
- has 15 vertices,
- is regular of degree 6,
- each pair of adjacent vertices have exactly 1 common neighbor, and
- each pair of nonadjacent vertices have exactly 3 common neighbors.

This is a so-called $(15, 6, 1, 3)$-SRG.
A CRG from an SRG

The SRG is the generalized quadrangle $GQ(2, 2)$. It has the following properties:

- has 15 vertices,
- is regular of degree 6,
- each pair of adjacent vertices have exactly 1 common neighbor, and
- each pair of nonadjacent vertices have exactly 3 common neighbors.

This is a so-called $(15, 6, 1, 3)$-SRG.
Upper bounds

Computing upper bounds for $g_{\text{Forb}}(H)(p)$ is easy:

- Begin with a **COLORED REGULARITY GRAPH (CRG)**, or a “recipe” that tells how to partition the vertices of the random graph, $G(n, p)$ and how to add/delete edges to have no induced H.
Upper bounds

Computing upper bounds for $g_{\text{Forb}(H)}(p)$ is easy:

- Begin with a **COLORED REGULARITY GRAPH (CRG)**, or a “recipe” that tells how to partition the vertices of the random graph, $G(n, p)$ and how to add/delete edges to have no induced H.
- Optimally weight the vertices of the CRG, depending on p, to minimize the number of edge-operations.
Upper bounds

Computing upper bounds for $g_{\text{Forb}}(H)(p)$ is easy:

- Begin with a **COLORED REGULARITY GRAPH (CRG)**, or a “recipe” that tells how to partition the vertices of the random graph, $G(n,p)$ and how to add/delete edges to have no induced H.
- Optimally weight the vertices of the CRG, depending on p, to minimize the number of edge-operations.
- This gives an upper bound for g.

![Diagram of a colored regularity graph](image)
Computing lower bounds

Lower bounds continue to be difficult.

If one knew all of the good CRGs or recipes, then $g_{\text{Forb}(H)}(p)$ could be computed. It is an infimum of functions of such CRGs.
Lower bounds continue to be difficult.

If one knew all of the good CRGs or recipes, then $g_{\text{Forb}(H)}(p)$ could be computed. It is an infimum of functions of such CRGs.

We use a technique we called “localization” which exploits the fact that the optimal weighting of vertices is a quadratic program.

$$
\min \left\{ \bar{x}^T M \bar{x} : \bar{x}^T \bar{1} = 1, \bar{x} \geq \bar{0} \right\}.
$$
Marchant and Thomason show that constructions used to solve the Zarankiewicz problem are necessary for the edit distance function for $K_{3,3}$. This is not true for $K_{2,2}$, $K_{2,3}$ or $K_{2,4}$.
What’s next?

- Marchant and Thomason show that constructions used to solve the Zarankiewicz problem are necessary for the edit distance function for $K_{3,3}$. This is not true for $K_{2,2}$, $K_{2,3}$ or $K_{2,4}$.

- With Tracy McKay, we have more results on computing $g_{\text{Forb}}(K_{2,t})(p)$ for $t \geq 5$. The “Zarankiewicz effect” seems to happen for $t \geq 9$.
Marchant and Thomason show that constructions used to solve the Zarankiewicz problem are necessary for the edit distance function for $K_{3,3}$. This is not true for $K_{2,2}$, $K_{2,3}$ or $K_{2,4}$.

With Tracy McKay, we have more results on computing $g_{Forb}(K_{2,t})(p)$ for $t \geq 5$. The “Zarankiewicz effect” seems to happen for $t \geq 9$.

With Maria Axenovich, we have considered similar questions for multicolorings of complete graphs and directed graphs.
Marchant and Thomason show that constructions used to solve the Zarankiewicz problem are necessary for the edit distance function for $K_{3,3}$. This is not true for $K_{2,2}$, $K_{2,3}$ or $K_{2,4}$.

With Tracy McKay, we have more results on computing $g_{\text{Forb}}(K_{2,t})(p)$ for $t \geq 5$. The “Zarankiewicz effect” seems to happen for $t \geq 9$.

With Maria Axenovich, we have considered similar questions for multicolorings of complete graphs and directed graphs.

Other metrics. Which other metrics or functions of hereditary properties behave this way?
Marchant and Thomason show that constructions used to solve the Zarankiewicz problem are necessary for the edit distance function for $K_{3,3}$. This is not true for $K_{2,2}$, $K_{2,3}$ or $K_{2,4}$.

With Tracy McKay, we have more results on computing $g_{\text{Forb}}(K_{2,t})(p)$ for $t \geq 5$. The “Zarankiewicz effect” seems to happen for $t \geq 9$.

With Maria Axenovich, we have considered similar questions for multicolorings of complete graphs and directed graphs.

Other metrics. Which other metrics or functions of hereditary properties behave this way?

- The cut norm?
What’s next?

- Marchant and Thomason show that constructions used to solve the Zarankiewicz problem are necessary for the edit distance function for $K_{3,3}$. This is not true for $K_{2,2}$, $K_{2,3}$ or $K_{2,4}$.

- With Tracy McKay, we have more results on computing $g_{\text{Forb}}(K_{2,t})(p)$ for $t \geq 5$. The “Zarankiewicz effect” seems to happen for $t \geq 9$.

- With Maria Axenovich, we have considered similar questions for multicolorings of complete graphs and directed graphs.

- Other metrics. Which other metrics or functions of hereditary properties behave this way?
 - The cut norm?
 - The entropy function?
What’s next?

- With Tracy McKay, we have more results on computing $g_{\text{Forb}(K_{2,t})}(p)$ for $t \geq 5$. The “Zarankiewicz effect” seems to happen for $t \geq 9$.

- With Maria Axenovich, we have considered similar questions for multicolorings of complete graphs and directed graphs.

- Other metrics. Which other metrics or functions of hereditary properties behave this way?
 - The cut norm?
 - The entropy function?

- Stability. What happens when many recipes give the best result?
What’s next?

- With Tracy McKay, we have more results on computing $g_{Forb(K_{2,t)}(p)}$ for $t \geq 5$. The “Zarankiewicz effect” seems to happen for $t \geq 9$.

- With Maria Axenovich, we have considered similar questions for multicolorings of complete graphs and directed graphs.

- Other metrics. Which other metrics or functions of hereditary properties behave this way?
 - The cut norm?
 - The entropy function?

- Stability. What happens when many recipes give the best result?

- Understanding graphs. Can we use this information to solve classical graph problems?
What’s next?

- With Maria Axenovich, we have considered similar questions for multicolorings of complete graphs and directed graphs.

- Other metrics. Which other metrics or functions of hereditary properties behave this way?
 - The cut norm?
 - The entropy function?

- Stability. What happens when many recipes give the best result?

- Understanding graphs. Can we use this information to solve classical graph problems?
 - Yes. Prömel and Steger used the same approach to count graphs in a hereditary property.
What’s next?

- With Maria Axenovich, we have considered similar questions for multicolorings of complete graphs and directed graphs.

- Other metrics. Which other metrics or functions of hereditary properties behave this way?
 - The cut norm?
 - The entropy function?

- Stability. What happens when many recipes give the best result?

- Understanding graphs. Can we use this information to solve classical graph problems?
 - Yes. Prömel and Steger used the same approach to count graphs in a hereditary property.

- Graph limits, as studied by Borges, Chayes, Elek, Lovász, B. Szegedy, Vesztergombi, et al.
An unusual conjecture

What if the graph H we want to edit away is a random graph, $G(n_0, p_0)$?

Formally,

Conjecture

Fix $p_0 \in [0, 1]$ and let $H \sim G(n_0, p_0)$ with $\mathcal{H} = \text{Forb}(H)$. Then, with prob. $\to 1$ as $n_0 \to \infty$,

$$g_{\mathcal{H}}(p) = \min \left\{ \frac{2 \log_2 n_0}{n_0 \log_2 \frac{1}{1-p_0}} \cdot p, \quad \frac{2 \log_2 n_0}{n_0 \log_2 \frac{1}{p_0}} \cdot (1-p) \right\} \pm \mathcal{o}(1).$$

Alon and Stav verified this for $p_0 = \frac{1}{2}$, yielding $p^* = \frac{1}{2}$. I.e., it would be harder to edit $G(n_0, \frac{1}{2})$ out of a $G(n_0, \frac{1}{2})$ than a $G(n_0, \frac{2}{3})$.
An unusual conjecture

What if the graph H we want to edit away is a random graph, $G(n_0, p_0)$?

Formally,

Conjecture

Fix $p_0 \in [0, 1]$ and let $H \sim G(n_0, p_0)$ with $\mathcal{H} = \text{Forb}(H)$. Then, with prob. $\to 1$ as $n_0 \to \infty$,

\[
g_{\mathcal{H}}(p) = \min \left\{ \frac{2 \log_2 n_0}{n_0 \log_2 \frac{1}{1-p_0}} p, \quad \frac{2 \log_2 n_0}{n_0 \log_2 \frac{1}{p_0}} (1 - p) \right\} \pm o(1).
\]

Alon and Stav verified this for $p_0 = 1/2$, yielding $p^* = 1/2$.
An unusual conjecture

What if the graph H we want to edit away is a random graph, $G(n_0, p_0)$?

Formally,

Conjecture

Fix $p_0 \in [0, 1]$ and let $H \sim G(n_0, p_0)$ with $\mathcal{H} = \text{Forb}(H)$. Then, with prob. $\rightarrow 1$ as $n_0 \rightarrow \infty$,

$$g_{\mathcal{H}}(p) = \min \left\{ \frac{2 \log_2 n_0}{n_0 \log_2 \frac{1}{1-p_0}} p, \quad \frac{2 \log_2 n_0}{n_0 \log_2 \frac{1}{p_0}} (1 - p) \right\} \pm o(1).$$

Alon and Stav verified this for $p_0 = 1/2$, yielding $p^* = 1/2$.

If the conjecture is false, it suggests unexpected behavior of $G(n, p)$.
If the conjecture is true, it would imply $p^* \sim \frac{\log(1-p_0)}{\log(p_0(1-p_0))}$.
An unusual conjecture

Formally,

Conjecture

Fix $p_0 \in [0, 1]$ and let $H \sim G(n_0, p_0)$ with $\mathcal{H} = \text{Forb}(H)$. Then, with prob. $\to 1$ as $n_0 \to \infty$,

$$g_{\mathcal{H}}(p) = \min \left\{ \frac{2 \log_2 n_0}{n_0 \log_2 \frac{1}{1-p_0}} p, \frac{2 \log_2 n_0}{n_0 \log_2 \frac{1}{p_0}} (1-p) \right\} \pm o(1).$$

Alon and Stav verified this for $p_0 = 1/2$, yielding $p^* = 1/2$.

If the conjecture is false, it suggests unexpected behavior of $G(n, p)$.

If the conjecture is true, it would imply $p^* \sim \frac{\log(1-p_0)}{\log(p_0(1-p_0))}$.

I.e., it would be harder to edit $G(n_0, 0.25)$ out of a $G \sim G(n, 0.172)$ than a $G \sim G(n, 0.25)$.
Thanks!

My home page:

http://orion.math.iastate.edu/rymartin

My CV (with links to this and previous talks):

http://orion.math.iastate.edu/rymartin/cv/cv.pdf

Contact me:

rymartin@iastate.com