SHOW ALL YOUR WORK to avoid loss of points.

1. For the following equations indicate their order and indicate all that apply: are separable, linear, exact or neither. (some equations can be more than one kind!) Do NOT solve the equations.

 (No half pts, no need to justify 2)

 [2pt] a) \(y \frac{d^2 y}{dx^2} + y = 1 + xy \) : 2nd Order; neither \(e.g. \)

 \[u = y - 6x \quad N = x - 1 \]

 [3pt] b) \(\frac{dy}{dx} = \frac{y - 6x}{1 - x} \) : 1st order; linear and exact

 \[u = y - 6x \quad N = x - 1 \]

 [2pt] c) \(\frac{dy}{dx} = \frac{e^{x+y}}{x} \) : 1st order; separable

 [3pt] d) \(\frac{dy}{dx} = \frac{3x^2 - 2 \arctan x + e^x}{y^3 + \sec^2 y - \sqrt{y}} \) : 1st order separable and exact

 put \(m = 3x^2 - 2 \arctan x + e^x \quad \text{and} \quad N = y^3 + \sec^2 y + \sqrt{y} \)

 \[\frac{\partial m}{\partial x} = 0 \quad \text{and} \quad \frac{\partial N}{\partial x} = 0. \]

2. Find the equilibrium solutions of the differential equation \(\frac{dy}{dx} = y(y^2 - 16) \), and classify them as asymptotically stable, unstable or semi-stable.

 Equilibrium Sol. ae \(y = c \) where \(f(c) = 0 \) , with \(f = y(y^2 - 16) \)

 Crit pts: \(c = 0, 4, -4 \)

 Number line \(-4 \quad -1 \quad 1 \quad 4 \)

 Phase line: \(y = 4 \) \(\{ \) unstable

 \(y = -4 \) \(\{ \) and \(y = 0 \) asymptotically stable
3. Find the model function for the population size of a colony of bacteria that is known to triplicate every half an hour and at time zero the population is P_0 million of bacteria. (That is, find the general solution $P(t)$ of the corresponding dif.eq. which models this scenario- assume that the rate of growth of the population is proportional to its size at a given time.)

\[\frac{dp}{dt} = k \cdot P \Rightarrow \frac{1}{P} \cdot dp = k \cdot dt \Rightarrow \ln |P| = kt + c_i \]

\[\Rightarrow P = C e^{kt} \quad P(0) = C e^{0} = C = P_0 \quad \text{so} \quad P(t) = P_0 e^{kt} \]

Now find k:

We know after $t = \frac{1}{2}$, P goes from P_0 to $3P_0$, i.e., $3P_0 = P_0 e^{\frac{k}{2}}$

Solve for k: $e^{\frac{k}{2}} = 3$ \Rightarrow $\frac{k}{2} = \ln 3$ \Rightarrow $k = 2 \cdot \ln 3$

Ans: \[P(t) = P_0 e^{(2 \ln 3) \cdot t} \quad \text{or} \quad P(t) = P_0 \cdot 3^{2t} \]

4. Solve the following exact equation and corresponding IVP (no need to verify it is exact):

\[(y \cos(xy) + e^{x-y}) \, dx + (x \cos(xy) - e^{x-y} + 1) \, dy = 0; \quad y(\sqrt{\pi}) = \sqrt{\pi} \]

\[M = \int M \, dx = \int y \cos(xy) + e^{x-y} \, dx = \sin(xy) + e^{x-y} + g(y) \]

\[N = \frac{\partial}{\partial y} \left(\sin(xy) + e^{x-y} + g(y) \right) = x \cos(xy) - e^{x-y} + g'(y) = x \cos(xy) - e^{x-y} + 1 \]

\[\Rightarrow g'(y) = 1 \quad \Rightarrow g(y) = y \]

Thus \[f(x,y) = \sin(xy) + e^{x-y} + y \]

Grad f \[\Rightarrow \sin(xy) + e^{x-y} + y = C \]

IVP: \[\text{Plug} \quad x = \sqrt{\pi}, \quad y = \sqrt{\pi} \]

\[\sin \left(\sqrt{\pi} \cdot \sqrt{\pi} \right) + e^{\sqrt{\pi} - \sqrt{\pi} + \sqrt{\pi}} = C \]

\[\sin^2 \pi + e^0 + \sqrt{\pi} = C \quad \Rightarrow \quad C = 1 + \sqrt{\pi} \]

Sol: \[\sin(xy) + e^{x-y} + y = 1 + \sqrt{\pi} \]
5. Solve the following equation using an appropriate substitution

\[\frac{dy}{dx} - \frac{2y}{x} = xy^3 \]

Note this isn't homogeneous nor of the form \(y' = f(Ax + By + c) \), but it is a Bernoulli equation.

\[\frac{dy}{dx} - \frac{2y}{x} = x \quad \iff \quad \frac{1}{y^3} \left(-\frac{2y}{x} \right) = x \]

let \(u = y^{-2} \) \(\Rightarrow \frac{du}{dx} = -2y^{-3} \frac{dy}{dx} \quad \Rightarrow \quad \int y^{-3} \frac{dy}{dx} = -\frac{1}{2} \int \frac{du}{dx} \]

Substitute: \(-\frac{1}{2} \frac{du}{dx} - \frac{2y}{x} u = x \) \(\iff \) linear in \(u \).

In standard form: \(\frac{du}{dx} + \frac{4}{x} u = -2x \) then \(u = e^{\int \frac{4}{x} dx} e^{\int -2x \frac{dx}{x}} = x^4 \)

The linear equation becomes \(\frac{d}{dx} \left(x^4 u \right) = -2x x^4 \cdot x^4 \cdot u = \int x^5 dx = -\frac{x^6}{6} + C \)

\(u = -\frac{x^2}{3} + CX^{-4} \)

\(y^{-2} = -\frac{x^2}{3} + CX^{-4} \) \(\iff \) Implicit Sol ok

\(y = \left(-\frac{x^2}{3} + CX^{-4} \right)^{-\frac{1}{2}} \) \(\iff \) In fact better as with we lose some information