1. Direct Proof

Theorems are statements that are true.

Proof is a written verification that a theorem is true.

Definitions will help avoid ambiguity. Other terms for theorems are propositions, lemma, corollary (an immediate consequence of a theorem).

Some often used definitions:

Def 1. An integer n is even if $n = 2a$ for some $a \in \mathbb{Z}$.

Def 2. An integer n is odd if $n = 2a + 1$ for some $a \in \mathbb{Z}$.

Def 3. Two integers have the same parity if they're both even or both odd otherwise they have opposite parity.

Def 4. Suppose $a, b \in \mathbb{Z}$. We say $a \mid b$ (a divides b) if $b = dc$ for some $c \in \mathbb{Z}$. In this case we say that a is a divisor of b and b is a multiple of a.

Def 5. An integer n is called prime if its only divisors are 1 and n (itself).

Def 6. An integer n is composite if it factors as $n = ab$, where both $a > 1$ and $b > 1$.

Def \(\gcd(a, b) \): greatest common divisor of \(a \) and \(b \)

\(\text{lcm}(a, b) \): least common multiple of \(a \) and \(b \)

Fact (accept w/o pf) That every \(n \in \mathbb{N}, n > 1 \) has a unique factorization into primes

Theorems of the form \(P \Rightarrow Q \)

e.g. Thm. If \(\lim_{k \to \infty} a_k \) converges then \(\lim_{k \to \infty} a_k = 0 \)

vs.

Thm. The series \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges

Outline: Thm. \(P \Rightarrow Q \)
proof Assume \(P \) is true

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \Rightarrow Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Then \(Q \) is true

Examples

Proposition If \(x \) is odd then \(x^2 \) is odd

Proof Assume \(x \) is odd, that is, \(x = 2a + 1 \)

for some \(a \in \mathbb{Z} \)

Then \(x^2 = (2a + 1)^2 = 4a^2 + 4a + 1 = 2(2a^2 + 2a) + 1 \)

since \(k = 2a^2 + 2a \in \mathbb{Z} \) then \(x^2 = 2k + 1 \) is an odd number
Proposition Let \(a, b, \) and \(c \) be integers
If \(ab \) and \(bc \) then \(ac \)

We want \(c = \alpha k \) for some \(k \in \mathbb{Z} \)

Proof Assume \(ab \) and \(bc \) that is we can write
\(b = \alpha d \) and \(c = \beta e \) for some integers \(d \) and \(e \).
Then \(c = (\alpha d) e = \alpha (de) \), which means \(a|c \)
(since \(de \in \mathbb{Z} \))

Proposition If \(x \) is an even integer then \(x^2 - 6x + 5 \) is odd

Proof Assume \(x \) is even, by definition we have
\(x = 2a \) for some \(a \in \mathbb{Z} \)
Then \(x^2 - 6x + 5 = (2a)^2 - 6(2a) + 5 \)
\[= 4a^2 - 12a + 4 + 1 \]
\[= 2(2a^2 - 6a + 2) + 1 \]
Since \(k = 2a^2 - 6a + 2 \in \mathbb{Z} \), \(x^2 - 6x + 5 \) is odd

Claim If \(n \) is not divisible by \(2 \), then it is odd

PF Assume \(n \neq 2a \) for all \(a \in \mathbb{Z} \), but we know
div algorithm holds \(\left(\frac{n}{2} \right) \), so that \(n = dq + r \) and
\(0 \leq r < 2 \)
Thus \(n = 2q + r \) and note \(r = 1 \), that is \(n = 2q + 1 \)
for some \(q \in \mathbb{Z} \)
Proposition: If a prime number P is greater than 2, then it is odd.

Proof: Assume $P > 2$ is a prime number. Since P is prime, its only divisors are 1 and P. Since $2 \neq 1$ and $2 \neq P$, then 2 is not a divisor of P, which implies (see claim above) that P is odd.

Claim: To show $m \leq n$ we show $m \leq n$ and $n \leq m$.

Proposition: If $a, b, c \in \mathbb{N}$, then $\text{lcm}(ca, cb) = c \cdot \text{lcm}(a, b)$.

Proof: Assume $a, b, c \in \mathbb{N}$.

Let $m = \text{lcm}(a, b)$, $n = c \cdot \text{lcm}(a, b)$.

$\text{lcm}(a, b) = ax = by$ for some $x, y \in \mathbb{Z}$.

Note $n = c \cdot \text{lcm}(a, b) = (ca)x = (cb)y$, so that n is a multiple of ca and of cb, so

$m \leq n$.