Ch. 2 Logic

The study of logic starts with "statements" i.e. sentences or mathematical expressions that are either definitely true or definitely false. We often denote statements with:

\[\text{P, Q, R, S...} \]

Ex.

\[\text{P: Every even number is divisible by 2,} \]

\[\text{Q: } 2 \in \mathbb{Z} \]

\[\text{R: } \sqrt{3} \notin \mathbb{Z} \]

\[\text{S: } \mathbb{N} \subseteq \mathbb{Z} \]

\[\text{S: Some right triangles are isosceles} \]

(\text{False Statements})

\[\text{p: All triangles are isosceles} \]

\[\text{p: } 5 = 7 \]

\[\text{p: } \mathbb{Z} \subseteq \mathbb{N} \]

Sentences that are not statements:

\[\text{Z, 42, Add 5 to both sides, what is the solution of } 3x = 1 \]

Statements can contain variables (open statements)

e.g., \(P(x): x \) is an even number

Ex. Fermat's Last Theorem:

\[\text{For all numbers } a, b, c, n \in \mathbb{N} \text{ for } n > 2 \text{ it is the case that } a^n + b^n \neq c^n \]

Goldbach Conjecture

\[\text{Every even integer greater than 2 is a sum of two prime numbers} \]
2.2. **And, or, not**

And & or: Used to combine statements to form new statements.

\[R: \text{The number } 2 \text{ is even AND the number } 3 \text{ is odd.} \]

<table>
<thead>
<tr>
<th>Truth Table</th>
<th>(P)</th>
<th>(Q)</th>
<th>(P \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td></td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td></td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td></td>
</tr>
</tbody>
</table>

\(\land \) Denotes **AND**

\(\lor \) Denotes **OR**

Note "or" does not mean one or the other; i.e., both can be true.

<table>
<thead>
<tr>
<th>Truth Table</th>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td></td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td></td>
</tr>
</tbody>
</table>

\(\neg \) Denotes **NOT**; If a statement is not true, use \(\neg \)

E.g., \(P \) is not true \(\neg P \)

\(P_1: 2 \) is even \(\neg P_2: 4 \) is prime

\(\neg P_1: 2 \) is not even \(\neg P_2: 4 \) is not prime

<table>
<thead>
<tr>
<th>Truth Table</th>
<th>(P)</th>
<th>(\neg P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(F)</td>
<td></td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td></td>
</tr>
</tbody>
</table>
2.3 Conditional Statements

E.g. P: the integer \(a \) is a multiple of 6
Q: the integer \(a \) is divisible by 2

R1: If the integer \(a \) is a multiple of 6 then
it is divisible by 2.
R2: If \(P \), then \(Q \)
P \(\Rightarrow \) Q
P implies Q

Truth Table

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P (\Rightarrow) Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

"P \(\Rightarrow \) Q" P is a sufficient condition for Q (but not necessary)
Q is a necessary condition for P

Ex.
For a function to be continuous it is sufficient that it is differentiable
P: \(f \) is differentiable
Q: \(f \) is continuous

2.4 Biconditional Statement

If \(P \Rightarrow Q \), then \(Q \Rightarrow P \) is not necessarily true

Def. The conditional statement \(Q \Rightarrow P \) is called the converse

If both the conditional and its converse are true
it is called a Biconditional

E.g. \(P \iff Q \): \((P \Rightarrow Q) \land (Q \Rightarrow P) \)
"P if and only if Q"