I non-conditional statements

Biconditional statements on that line.

Proposition \(P \iff Q \)

proof

\(P \implies Q \)

\(Q \implies P \)

Proposition: Suppose \(a \) and \(b \) are integers. Thus \(a \equiv b \pmod{6} \) if and only if \(a \equiv b \pmod{2} \) and \(a \equiv b \pmod{3} \).

Proof: Assume \(a \equiv b \pmod{6} \) that is \(6 \mid a-b \), so we can write \(a-b=6n \) for some \(n \in \mathbb{Z} \)

but \(a-b=6n \) is equivalent to \(a-b \equiv 0 \pmod{2} \) and \(a-b \equiv 0 \pmod{3} \), so we have \(a \equiv b \pmod{2} \) and \(a \equiv b \pmod{3} \).

\(a-b=2x \quad a-b=3z \) for some \(x, z \in \mathbb{Z} \)

\(2x=3z \)

3z is even, \(x \) is even

\(x=2m \) for some \(m \in \mathbb{Z} \)

\(a-b=3(2m)=6m \)

\(6\mid a-b \)

\(a \equiv b \pmod{6} \)
Dividing non-conditional statements

II Equivalent Statements (Examples are on page 123)

The following are equivalent (TFAE)

Proof \(a \div b = c \quad a \div b = c \)
\[\begin{align*}
& a \leq b \leq c \\
& b \leq a \leq c \\
& c \leq b \leq a \\
& d \leq e \leq d \\
& f \leq e \leq f
\end{align*} \]

III Existence & Uniqueness proofs

\[A = ax + by, \quad x, y \in \mathbb{Z} \]

(on page 126) We need to show \(\text{dla and dlb} \), when we divide \(a \) by \(d \), the division algorithm give \(a = qd + r \) with \(0 \leq r < d \).

\[r = a - q \cdot d \]
\[= a - q(ab + bl) \]
\[= a(1 - q) + b(1 - qd) = r + \alpha \]

\(0 \leq r < d \) and \(d \) is the smallest positive number in \(A \).

\(r = 0 \quad a = qd \quad d \mid a \)

With a similar argument we can see \(d \mid b + d \mid b \)

(Because \(b = qd + r \))

\(d \) is a common divisor of \(a \) and \(b \).

We can write \(a = \gcd(a, b)
\quad b = \gcd(a, b) \cdot n
\) for \(n, m \in \mathbb{Z} \)

\[d = ak + b \mid = \gcd(a, b) \cdot mk + \gcd(a, b) \cdot n. \]

\[\therefore \quad d = \gcd(a, b) \cdot n \]
\[d = \gcd(a, b) (mk + nl) \]

We have \(d \geq \gcd(a, b) \)
\(d \) is a common divisor.

Therefore, \(d = \gcd(a, b) \)
\[\gcd(a, b) = ak + bd \]