13.1 Curves in Space and Tangents

A real valued function f:

$\begin{align*}
\text{Domain} &= \mathbb{R} \\
\text{Range} &= \mathbb{R}
\end{align*}$

A vector valued function \mathbf{F}:

$\begin{align*}
\text{Domain} &= \mathbb{R} \\
\text{Range} &= \text{vectors}
\end{align*}$

$\mathbf{F}(t) = \langle f(t), g(t), h(t) \rangle$

Curves in space are described through vector valued functions.

Example. A line is a curve in space, and recall that we describe lines through parametric equations

$\begin{align*}
\mathbf{r}(t) &= (x_0 + tv_1, y_0 + tv_2, z_0 + tv_3) \\
\mathbf{F}(t) &= \langle x_0 + tv_1, y_0 + tv_2, z_0 + tv_3 \rangle
\end{align*}$

(line through (x_0, y_0, z_0) parallel to $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$)

In general if $x=f(t)$, $y=g(t)$ and $z=h(t)$ for some functions f, g and h, we have a set of points in space obtained by varying the parameter t.

* If all three of f, g and h are continuous functions, then the curve they describe is continuous.

E.g. $\mathbf{F}(t) = (4 + \sin(20t)) \cos(t) \mathbf{i} + (4 + \sin(20t)) \sin(t) \mathbf{j} + \cos(20t) \mathbf{k}$
Typically we use $\vec{r}(t)$, with t in some interval I to denote vector equations of curves.

$$\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$$

Point (x_o, y_o, z_o), corresponding to some t_o its position vector is: $\vec{r}(t_o) = \langle x_o, y_o, z_o \rangle$

Example. The Helix

Sketch the vector function (curve) given by: $\vec{r}(t) = \langle \cos t, \sin t, t \rangle$

Note that $x(t) = \cos t$ and $y(t) = \sin t$ satisfy:

$$\cos^2 t + \sin^2 t = \frac{x^2 + y^2}{x^2 + y^2} = 1$$

i.e. all points of the curve lie on the cylinder $x^2 + y^2 = 1$

If $0 \leq t \leq 2\pi$

- $\vec{r}(0) = \langle -1, 0, 0 \rangle$
- $\vec{r}(\pi/2) = \langle 0, 1, \pi/2 \rangle$
- $\vec{r}(\pi) = \langle 1, 0, \pi \rangle$
- $\vec{r}(3\pi/2) = \langle -1, 0, \pi \rangle$

If $-\infty < t < \infty$
Limits and Continuity

To work with vector valued functions \(\mathbf{r}(t) = f(t) \hat{i} + g(t) \hat{j} + h(t) \hat{k} \), we do it component by component.

Limits: We define \(\lim_{t \to t_0} \mathbf{r}(t) = \left(\lim_{t \to t_0} f(t), \lim_{t \to t_0} g(t), \lim_{t \to t_0} h(t) \right) \)

Definition. Consequently, we say \(\mathbf{r}(t) \) is continuous at \(t_0 \) if \(\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{r}(t_0) \)

And \(\mathbf{r}(t) \) is continuous if it is continuous at every \(t \) in its domain, which is in fact: \(\text{Dom } \mathbf{r} = \text{Dom } f \cap \text{Dom } g \cap \text{Dom } h \).

Derivative of \(\mathbf{r}(t) \)

\[\mathbf{PQ} = \mathbf{r}(t + \Delta t) - \mathbf{r}(t) =: \Delta \mathbf{r} \]

\[\frac{\Delta \mathbf{r}}{\Delta t} \] is a scalar multiple of \(\Delta \mathbf{r} \)

Note as \(\Delta t \to 0 \), \(\frac{\Delta \mathbf{r}}{\Delta t} \to \text{tangent vector at } P \)

That is \(\mathbf{r}'(t) = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{f(t+\Delta t) - f(t)}{\Delta t} \hat{i} + \lim_{\Delta t \to 0} \frac{g(t+\Delta t) - g(t)}{\Delta t} \hat{j} + \lim_{\Delta t \to 0} \frac{h(t+\Delta t) - h(t)}{\Delta t} \hat{k} = f'(t) \hat{i} + g'(t) \hat{j} + h'(t) \hat{k} \)

That is: \(\mathbf{r}'(t) = \left< f'(t), g'(t), h'(t) \right> \) as long as \(f'(t), g'(t) \) and \(h'(t) \) exist.
Motion in Space

\(r'(t) \) (wherever it is non zero) is the vector tangent to the curve \(\vec{r}(t) \) at \(t \) and it points in the direction of motion.

In particular this tells us that the same curve can be parametrized in distinct directions.

Consider a particle traveling with a path described by the curve:

\[
\vec{r}(t) = \langle f(t), g(t), h(t) \rangle
\]

meaning it's position at time \(t \) is given by \(\vec{r}(t) \), then:

1. The velocity of the particle is:
 \[
 \vec{v}(t) = \vec{r}'(t)
 \]

2. Its speed is given by:
 \[
 |\vec{v}(t)| = |\vec{r}'(t)|
 \]

3. Its acceleration is given by:
 \[
 \vec{a}(t) = \vec{v}'(t) = \vec{r}''(t)
 \]

4. The unit vector \(\frac{\vec{v}}{|\vec{v}|} \) is the direction of motion at time \(t \).

Example. Find the speed and acceleration of a particle whose motion is given by the position vector: