Homework #4, due 9/23/09 = 1.6.10, 1.6.17, 1.7.4, 1.7.17, 2.1.8

1.6.10 Fill in the details in the proof that the symmetric groups S_Δ and S_Ω are isomorphic if $|\Delta| = |\Omega|$ as follows: let $\theta : \Delta \rightarrow \Omega$ be a bijection. Define $\varphi : S_\Delta \rightarrow S_\Omega$ by $\varphi(\sigma) = \theta \circ \sigma \circ \theta^{-1}$ for all $\sigma \in S_\Delta$, and prove the following

(a) φ is well-defined, that is, if σ is a permutation of Δ then $\theta \circ \sigma \circ \theta^{-1}$ is a permutation of Ω.

Since θ is a bijection it has an inverse function $\theta^{-1} : \Omega \rightarrow \Delta$ such that $\theta \circ \theta^{-1}$ is the identity function I_Ω on Ω and $\theta^{-1} \circ \theta$ is the identity function I_Δ on Δ. Suppose σ is a permutation of Δ. This implies that $\sigma : \Delta \rightarrow \Delta$ so we have the following situation,

$\Omega \xrightarrow{\theta} \Delta \xrightarrow{\sigma} \Delta \xrightarrow{\theta^{-1}} \Omega$

and we may compose θ, σ, and θ^{-1} to obtain a function $\varphi(\sigma) = \theta \circ \sigma \circ \theta^{-1} : \Omega \rightarrow \Omega$. Since σ is a permutation it has an inverse $\sigma^{-1} : \Delta \rightarrow \Delta$, so

Let $\tau = \theta \circ \sigma^{-1} \circ \theta^{-1}$. Then

$$\varphi(\sigma) \circ \tau = (\theta \circ \sigma \circ \theta^{-1}) \circ (\theta \circ \sigma^{-1} \circ \theta^{-1})$$

$$= \theta \circ \sigma \circ (\theta^{-1} \circ \theta) \circ \sigma^{-1} \circ \theta^{-1}$$

$$= \theta \circ \sigma \circ I_\Delta \circ \sigma^{-1} \circ \theta^{-1}$$

$$= \theta \circ (\sigma \circ \sigma^{-1}) \circ \theta^{-1}$$

$$= \theta \circ \theta^{-1}$$

$$= I_\Delta$$

and

$$\tau \circ \varphi(\sigma) = (\theta \circ \sigma^{-1} \circ \theta^{-1}) \circ (\theta \circ \sigma \circ \theta^{-1})$$

$$= \theta \circ \sigma^{-1} \circ (\theta^{-1} \circ \theta) \circ \sigma \circ \theta^{-1}$$

$$= \theta \circ \sigma^{-1} \circ I_\Delta \circ \sigma \circ \theta^{-1}$$

$$= \theta \circ (\sigma^{-1} \circ \sigma) \circ \theta^{-1}$$

$$= \theta \circ \theta^{-1}$$

$$= I_\Delta$$

Since $\varphi(\sigma)$ has τ as left and right inverse, it follows that $\varphi(\sigma)$ is a bijection by Prop 0.1.1(3). Since its domain and codomain are the same set Ω, this means that $\varphi(\sigma)$ is a permutation of Ω.

(b) φ is a bijection from S_Δ onto S_Ω [Find a 2-sided inverse for φ.]

Define a function ψ on S_Ω by $\psi(\xi) = \theta^{-1} \circ \xi \circ \theta$ for every ξ in S_Ω. Note that, since θ is a bijection, its inverse θ^{-1} is also a bijection, so the argument above in part (a), with Δ and Ω interchanged and θ replaced with θ^{-1}, shows that $\psi(\xi)$ is a...
permutation of \(\Delta \). Thus \(\psi \) maps \(S_\Omega \) into \(S_\Delta \). It turns out to be a 2-sided inverse of \(\varphi \) because, for every \(\sigma \) in \(S_\Delta \),

\[
\psi(\varphi(\sigma)) = \psi(\theta \circ \sigma \circ \theta^{-1}) \\
= \theta^{-1} \circ (\theta \circ \sigma \circ \theta^{-1}) \circ \theta \\
= (\theta^{-1} \circ \theta) \circ \sigma \circ (\theta^{-1} \circ \theta) \\
= I_\Delta \circ \sigma \circ I_\Delta = \sigma
\]

and, for every \(\xi \) in \(S_\Omega \),

\[
\varphi(\psi(\xi)) = \varphi(\theta^{-1} \circ \xi \circ \theta) \\
= \theta \circ (\theta^{-1} \circ \xi \circ \theta) \circ \theta^{-1} \\
= (\theta \circ \theta^{-1}) \circ \xi \circ (\theta \circ \theta^{-1}) \\
= I_\Omega \circ \xi \circ I_\Omega = \xi
\]

Since \(\varphi \) has a 2-sided inverse, it follows that \(\varphi \) is a bijection by Prop 0.1.1(3).

(c) \(\varphi \) is a homomorphism, that is, \(\varphi(\sigma \circ \tau) = \varphi(\sigma) \circ \varphi(\tau) \) for all \(\sigma, \tau \in S_\Omega \). Then

\[
\varphi(\sigma \circ \tau) = \theta \circ (\sigma \circ \tau) \circ \theta^{-1} \\
= \theta \circ \sigma \circ I_\Delta \circ \tau \circ \theta^{-1} \\
= \theta \circ \sigma \circ (\theta^{-1} \circ \theta) \circ \tau \circ \theta^{-1} \\
= (\theta \circ \sigma \circ \theta^{-1}) \circ (\theta \circ \tau \circ \theta^{-1}) \\
= \varphi(\sigma) \circ \varphi(\tau)
\]

so \(\varphi \) is indeed a homomorphism.

Parts (b) and (c) show that \(\varphi \) is a bijection and a homomorphism, i.e., it is an isomorphism.

1.6.17 Let \(G \) be any group. Prove that the map from \(G \) to itself defined by \(g \mapsto g^{-1} \) is a homomorphism if and only if \(G \) is abelian.

Assume \(g \mapsto g^{-1} \) is a homomorphism. Then, for arbitrary elements \(g, h \in G \), we have \((gh)^{-1} = g^{-1}h^{-1} \) by the homomorphism condition, but in every group we also have \((gh)^{-1} = h^{-1}g^{-1} \). From these two equations we get \(g^{-1}h^{-1} = h^{-1}g^{-1} \). This last equation holds for all \(g \) and \(h \), so we may apply it also to \(g^{-1}h \) and \(h^{-1}g \), obtaining \((g^{-1})(h^{-1})^{-1} = (h^{-1})^{-1}(g^{-1})^{-1} \), which simplifies to \(gh = hg \). Thus any two elements of \(G \) commute, and \(G \) is therefore abelian.

Assume \(G \) is abelian. Then the homomorphism condition holds for the inversion map because, for all \(g, h \in G \),

\[
(gh)^{-1} = h^{-1}g^{-1} \\
= g^{-1}h^{-1} \quad G \text{ is abelian}
\]

1.7.4 Let \(G \) be a group acting on a set \(A \) and fix some \(a \in A \). Show that the following sets are subgroups of \(G \).

(a) The kernel \(\{g \in G | \forall a \in A (g \cdot a = a) \} \) of the action.
First we prove that this set is closed under the group operation of G. Suppose g and h are in the kernel. Then, for every $a \in A$,

$$(gh) \cdot a = g \cdot (h \cdot a)$$

action axiom

$$= g \cdot a$$

h is in the kernel

$$= a$$

g is in the kernel

so gh is also in the kernel. Next we show the kernel is closed under inverses. Assume g is in the kernel and $a \in A$. Then $g \cdot a = a$. Applying g^{-1} to both sides of this last equation produces $g^{-1} \cdot (g \cdot a) = g^{-1} \cdot a$. By the first action axiom, $(g^{-1}g) \cdot a = g^{-1} \cdot a$, but $g^{-1}g = 1$ and the second action axiom says that $1 \cdot a = a$, so we get $a = g^{-1} \cdot a$. This shows g^{-1} is also in the kernel.

(b) The stabilizer $G_a = \{g \in G | g \cdot a = a\}$ of a in G.

For closure, assume g and h are in the stabilizer of a in G. Then $g \cdot a = a$ and $h \cdot a = a$, so, by the first action axiom, $(gh) \cdot a = g \cdot (h \cdot a) = g \cdot a = a$. Thus gh is also in the stabilizer of a. Furthermore, $g^{-1} \cdot (g \cdot a) = g^{-1} \cdot a$, but $g^{-1} \cdot (g \cdot a) = (g^{-1}g) \cdot a = 1 \cdot a = a$ by both action axioms, so $a = g^{-1} \cdot a$, i.e., g^{-1} is in the kernel of the action. Finally, note that 1 is in the kernel by the second action axiom ($1 \cdot a = a$ for all $a \in A$).

1.7.17 Let G be a group and let G act on itself by left conjugation, so each $g \in G$ maps G to G by $x \mapsto gxg^{-1}$. For fixed $g \in G$, prove that conjugation by g is an isomorphism from G onto G itself (i.e. is an automorphism of G). Deduce that x and gxg^{-1} have the same order for all $x \in G$ and that for any subset $A \subseteq G$, $|A| = |gAg^{-1}|$.

Let $\varphi(x) = gxg^{-1}$ for all $x \in G$. Clearly φ maps G into G. First we will show φ is a homomorphism. The homomorphism condition holds for φ because

$$\varphi(xy) = g(xy)g^{-1} = gx(yg^{-1}) = gx(g^{-1}y)g^{-1} = (gxg^{-1})(gyg^{-1}) = \varphi(x)\varphi(y).$$

Next, φ is injective, for if $\varphi(x) = \varphi(y)$ then $gxg^{-1} = gyg^{-1}$, so by multiplying this equation of the left of g^{-1} and on the right by g we get $g^{-1}(gxg^{-1})g = g^{-1}(gyg^{-1})g$, hence $(g^{-1}g)x(g^{-1}g) = (g^{-1}g)y(g^{-1}g)$, hence $1x1 = 1y1$, hence $x = y$. Finally, φ is surjective because if $x \in G$ then $\varphi(y) = x$ where $y = g^{-1}xg$, since $\varphi(y) = \varphi(g^{-1}xy) = g(xg^{-1}y)g^{-1} = x$.

Isomorphisms preserve order, so $|x| = |\varphi(x)| = |gxg^{-1}|$ for all $x \in G$. An isomorphism is a bijection, and bijections preserve cardinality of sets, so for any subset $A \subseteq G$, $|A| = |gAg^{-1}|$.

2.1.8 Let H and K be subgroups of G. Prove that $H \cup K$ is a subgroup of G if and only if either $H \subseteq K$ or $K \subseteq H$.

First the easy direction: assume that either $H \subseteq K$ or $K \subseteq H$. If the former, then $H \cup K = H$ so $H \cup K$ is a subgroup of G simply because H is already a subgroup of G. Similarly, if $K \subseteq H$ then $H \cup K = K$ and again $H \cup K$ is a subgroup of G.

Now for the interesting direction. Assume that $H \cup K$ is a subgroup of G. It will suffice to assume that neither $H \subseteq K$ nor $K \subseteq H$ and derive a contradiction. Since it is not the case that $K \subseteq H$, there must be some element $k \in K$ such that $k \notin H$. Similarly, since $H \not\subseteq K$, there must be some element $h \in H$ such that $h \notin K$.
Consider the element hk. We have $h \in H \subseteq H \cup K$ and $k \in K \subseteq H \cup K$, but $H \cup K$ is assumed to be a subgroup, so $H \cup K$ is closed under the group operation of G. Therefore $hk \in H \cup K$. This implies that either $hk \in H$ or $hk \in K$, but we'll get a contradiction in either case. Note that since H and K are subgroups, we have $h^{-1} \in H$ and $k^{-1} \in K$. If $hk \in H$ then $k = h^{-1}(hk) \in H$, contradicting $k \notin K$, while if $hk \in K$ then $(hk)k^{-1} \in K$, contradicting $h \notin K$.