Computational Complexity of Locally Injective Homomorphisms to Weight Graphs: A Full Classification of Simple Weights

Ondřej Bílka, Jiří Fiala, Jan Kratochvíl, Bernard Lidický, Marek Tesař

Charles University

16.2.2010 - ATCAGC 2010
Definitions

A *weight graph* is a connected multi-graph G with two vertices A, B of degree at least three and all other of degree two. Moreover, $G - A$ and $G - B$ contain a cycle.

A weight graph is *simple* if $\text{deg}(A) = \text{deg}(B) = 3$. Also known as dumbbell or barbell.

$W(1,1,1)$

$W(1,2,3)$
Simple weight graphs

Name: H-LIHOM
Parameter: graph H
Input: graph G
Question: Does exist a locally injective homomorphism $f : V(G) \rightarrow V(H)$?

Theorem
If H is a bipartite simple weight graph (A, B in different parts), then H-LIHOM is solvable in polynomial time.

Theorem
If H is a non-bipartite simple weight graph, then H-LIHOM is NP-complete.
Simple overview of the polynomial algorithm

simple bipartite weight graph H
a graph G as input

• fix a bipartition of G
• compute possible mappings of paths of 2-vertices in G
• replace paths by gadgets and obtain G'
• compute a "matching" in G'
• construct a mapping $G \to H$ according to the matching
Simple bipartite case (polynomial time)

Let $H = W(a, b, c)$ be a bipartite weight graph, G an input graph.

Consider the weight graph $W(2, 2, 1)$.

Fix a bipartition of 3-vertices in G (2 possibilities).

For every path, decide possible mappings on ends:
(a-c, b-c, a-a, a-b, c-a, c-b, c-c)
Simple bipartite case (polynomial time)

$H = W(a, b, c)$ be a bipartite weight graph

fix a bipartition of 3-vertices of G

for every path decide possible mappings on ends

(a-c, b-c, a-a, a-b, c-a, c-b, c-c)
Simple bipartite case (polynomial time)

We want to determine the mapping of c around every 3-vertex one at every vertex - like matching

Lemma

Let G be a graph and a mapping $f : V(G) \rightarrow I$, where I is a set of intervals. A subgraph G' of G such that $\deg_{G'}(v) \in f(v)$ for all $v \in V(G)$ can be found in polynomial time.

replace paths by gadgets (includes f) - G'
assign $f(v) = 1$ for all 3-vertices of G'
LIH\textsubscript{om} to simple weight graphs

replace paths \(\begin{array}{c}
\bullet \quad \bullet \\
1 & 1
\end{array} \) by gadgets (includes \(f \))

\[
\begin{array}{ccc}
a - a & a - c & a - c \\
1 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc}
a - c & c - a & a - c \\
1 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc}
a - a & a - c & a - a \\
0, 1 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc}
a - a & a - c & a - a \\
0, 1 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc}
a - a & a - c & a - a \\
0, 1, 1 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc}
a - c & c - a & c - c \\
1 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc}
a - c & c - a & c - c \\
1, 2 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc}
a - a & a - c & a - a \\
1, 2 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc}
a - a & a - c & a - a \\
1, 2 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc}
a - a & a - c & a - a \\
1, 2 & 1 & 1
\end{array}
\]

\[
\begin{array}{ccc}
a - a & a - c & a - a \\
1, 2 & 1 & 1
\end{array}
\]
Simple bipartite case (polynomial time) - Example

Replacing path by a gadget and getting a factor.
Simple bipartite case (polynomial time) - Overview

- fix a bipartition of G
- compute possible mappings of paths in G
- replace paths by gadgets (G')
- compute f-factor in (G')
- map c in G according to edges in f-factor of G'
- map a, b around A and B
- map remaining vertices
LIHOM to simple weight graphs

Simple non-bipartite case (NP-complete)

$G = W(a, b, c)$, assume $\text{GCD}(a, b, c) = 1$ and $\text{GCD}(a, b, 2c) = 1$

Lemma

Let $a, b, c \in \mathbb{N}$ such that $\text{GCD}(a, b, 2c) = 1$. Then exist $x, y, z \in \mathbb{N}$ such that $ax = by + 2cz + c$ and $x, y \geq z$. \qed

Let $k \in \mathbb{N}$ be the smallest such that exists a mapping of path of length k:

$A \sim k \sim X$

$A \sim k - X$

$B \sim k - X$

$B \sim k \sim X$

$X \in \{A, B\}$
Simple non-bipartite case (NP-complete)

decide reduction according to what the path of length k allows

$$A \sim k \sim X$$ 2-IN-3-SAT

$$B \sim k - X$$

$$A \sim k \sim X$$ $A \sim k \sim Y$ NAEQ-SAT

$$B \sim k - X$$ $B \sim k - Y$

$$A \sim k \sim X$$ $A \sim k - Y$ NAEQ-SAT

$$B \sim k - X$$ $B \sim k \sim Y$

$Y \neq X, X, Y \in \{A, B\}$
LIHOM to simple weight graphs

Variable gadget - 2-in-3-SAT

\[
\begin{align*}
X & \quad A \\
& \quad B \\
& \quad k \\
X & \quad X
\end{align*}
\]
LIHOM to simple weight graphs

Variable gadget - 2-IN-3-SAT
Variable gadget - 2-IN-3-SAT

LIHOM to simple weight graphs
LIHOM to simple weight graphs

Variable gadget - 2-IN-3-SAT
Variable gadget - 2-IN-3-SAT

LIHOM to simple weight graphs
Variable gadget - 2-IN-3-SAT
Variable gadget - 2-IN-3-SAT
Use three paths of length k to form a clause.
Other partial results

- symmetric weight graph, which contains $W(a, a, a)$ (NP-complete)
- generalization of the polynomial time algorithm
- some small cases for weight graphs (NP-complete)
- some small cases for graphs

\[\text{Graphs} \]