Standard Questions
1. Use the points $P(1, -1, 3)$, $Q(2, 2, 1)$, $R(-1, 2, 4)$, $S(4, 2, 1)$.
 (a) Find the midpoint between P and Q
 (b) Find the distance between P and Q
 (c) Find the angle between \overrightarrow{PQ} and \overrightarrow{PR}
 (d) Parameterize the line segment PQ
 (e) Find the equation of the line L that goes through P and Q
 (f) Find the distance of L from the origin
 (g) Find the distance of L from the point S
 (h) Find the equation of the plane Π through P, Q, R
 (i) Find the distance of Π from the origin
 (j) Find the distance of Π from the point S
 (k) Find the intersection of Π with the plane $x - 2y + z = 3$
 (l) Find the angle between \overrightarrow{PS} and Π
 (m) Find the equation of the line through S which is perpendicular to Π
 (n) Find the point where L intersects Π
 (o) Find the area of the triangle PQR
(p) Find the component of \overrightarrow{PS} in direction \overrightarrow{PQ}

(q) Find the volume of the parallelepiped spanned by $\overrightarrow{PQ}, \overrightarrow{PR}, \overrightarrow{PS}$

2.
(a) The points $(2, 1, 3)$ and $(0, 3, 1)$ form a diameter of a sphere. Find its equation.

(b) Describe and classify the following quadratic surfaces:

\[
\begin{align*}
z^2 - x^2 - y^2 &= 1 \\
z^2 - x^2 + y^2 &= 1 \\
z^2 + x^2 - y^2 &= 0 \\
z^2 + x^2 - y &= 0
\end{align*}
\]

3. Do problem 5 (a), page 722.

Advanced Questions

4. Use the setup of problem 1.
(a) Find the volume of the tetrahedron $PQRS$

(b) Find the projection of \overrightarrow{PS} into the plane Π

5. For the sphere from problem 2(a), find the equation of the tangent plane at $(2, 1, 3)$

6. Find the coordinates of the vector obtained by rotating the vector $(1, 2)$ by 40° counterclockwise

7. Find the shortest distance between the lines

\[
\vec{r}(t) = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \quad \text{and} \quad \vec{r}(s) = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + s \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}.
\]

8. Find the point where the planes $x - y + z = 0$, $2x - y + 2z = 1$ and $x + 2y - z = 7$ intersect