ERRATA: “TOPICS IN ADVANCED ALGEBRA,”
J.D.H. SMITH

Line 21 – 3: \((f, g) \mapsto fg\)
Line 22 – 1: with \(1_X = 1\)
Line 26 – 10: \((x_1, x_2) \cdot (y_1, y_2) = (x_1 \cdot y_1, x_2 \cdot y_2)\)
Line 30 – 2: semilattice \((S, \leq_{\downarrow})\) and a lower bound for the join semi-
lattice \((S, \leq_{\uparrow})\).
Line 62 + 9:
\[
1 + \sum_{n=1}^{\infty} p(n)x^n = \prod_{m=1}^{\infty} (1 - x^m)^{-1}
\]
Line 95 + 6: \(= a(rt + st)\)
Line 95 + 9: so \((r + s)t = rt + st\) and
Line 95 – 13: Let \(S\) or \((S, +, \cdot)\) be a ring.
Line 98 + 8: unique \(S\)-homomorphism \(f: \coprod_{i \in I} A_i \to C\)
Line 120 – 10: if \(k\) is odd and \(2k + 1\) is prime.
Lines 132 – 9 to – 6: Let \(\mathbb{Q}[\zeta_n]\) be the smallest subfield of \(\mathbb{C}\) that
contains the \(n\)-th root of unity \(\zeta_n = \exp(2\pi i / n)\). Then the Galois
group of \(\mathbb{Q}[\zeta_n]\) over \(\mathbb{Q}\) is the group \((\mathbb{Z}/n, +, 0)^*\) of units. If \(n\) is an
odd prime, the intermediate fields correspond to the divisors \(r\) of
\(n - 1\).
Line 140 – 9: Consider the adjunction (1.2).
Line 151 + 11: components \((1_F)_x = 1_{xF}: xF \to xF\) at each vertex
Line 151 – 6: for \(m \in M\) and \(g, h \in G\).
Line 162 – 15: pullback of \(X_0 \xrightarrow{1_{X_0} \times f_0} X_0 \times X_1 \xleftarrow{1_{X_0} \times f_1} X_0\).
Line 162 – 7, – 6: the insertion into \(V\) of the null space