Problem 1. To celebrate the new year, Emily wrote down a large number by writing the integers 1, 2, 3, ..., 2016 one after another to produce the number

\[N = 1234 \ldots 201420152016. \]

For full credit answer, with complete explanations, the following questions

a. How many digits are in the number \(N \)?

b. Reading from the left, what is the 2016th digit of \(N \)?

c. What is the remainder when \(N \) is divided by 9?

Solution.

a. The 9 integers 1-9 contribute 9 digits.

The 90 integers 10-99 contribute \(2 \times 90 = 180 \) digits.

The 900 integers 100-999 contribute \(3 \times 900 = 2700 \) digits.

The 1017 integers 1000-2016 contribute \(4 \times 1017 = 4068 \) digits.

Summing these we see that \(N \) is \(9 + 180 + 2700 + 4068 = 6957 \) digits.

b. The 2016-th digit from the left comes from one of the three digit number contributions. The one and two digit integers contribute 189 digits to \(N \), Because

\[\frac{2016 - 189}{3} = 609, \]

the 2016-th digit will be the third digit of the 609-th three digit number. Starting from 100, the 609-th three digit number is 708. The third digit in this number is 8.

c. Given and integer, \(M \) partition the string of digits to get several smaller numbers.

Let \(S \) be the sum of the smaller numbers. Then \(M \) and \(S \) have the same remainder when divided by 9. For example, if \(M = 23374199 \) we can cut \(M \) into the three numbers 23,374, 199. The sum of these is \(S = 596 \). It is easy to check that \(M \) and \(S \) both leave a remainder of 2 when divided by 9. This on division by 9, \(N \) will have the same remainder as

\[S = 1 + 2 + \cdots + 2016 = \frac{2016(2016 + 1)}{2} = 2003136. \]

Because \(S \) leaves remainder 0 when divided by 9, this is also the remainder when \(N \) is divided by 9.