Problem 2. A sphere is in the corner of a room and is tangent to the two walls that meet at that corner (and of course tangent to the floor.) There is a point on the sphere that is 4 units from one of the walls, 6 units from the other wall, and 12 units from the floor. Find all possible lengths for the radius of the sphere.

Solution. Let the corner of the room be the origin and the three positive coordinate axes along the lines of intersection of the walls and each wall-floor pair. If the sphere has radius r, then the sphere is centered at (r, r, r). The point described in the problem statement has coordinates $(4, 6, 12)$ and is on the sphere. Therefore

$$(4-r)^2 + (6-r)^2 + (12-r)^2 = r^2$$

from which

$$r^2 - 22r + 98 = 0.$$

By the quadratic formula,

$$r = \frac{22 \pm \sqrt{22^2 - 4 \cdot 98}}{2} = 11 \pm \sqrt{23}.$$