Problem 12. Triangle ABC with $A = (11, 27)$, $B = (180, 1)$, and $C = (102, 66)$ is rotated in the plane about a point P. The result is triangle $A'B'C'$ with $A' = (17, -81)$, $B' = (-24, 85)$, and $C' = (-54, -12)$. Find the coordinates of point P.

Solution. The point P has coordinates $(50, -25)$.

Because A and A' are equidistant from P, the point P must lie on the perpendicular bisector of AA'. The equation for this perpendicular bisector is

$$x - 81y = 500.$$

The point P also lies on the perpendicular bisector of BB' and on the perpendicular bisector of CC'. The equations for these are

$$17x - 7y = 1025 \quad \text{and} \quad 2x + y = 75,$$

respectively. Solving these three equations simultaneously we find a unique solution (the three lines are concurrent) $x = 50$ and $y = -25$. It follows that $P = (50, -25)$.