Problem 4. Let \(x, y, z, a, b, c \) be integers that satisfy
\[
x^2 + y^2 = a^2, \quad y^2 + z^2 = b^2, \quad \text{and} \quad z^2 + x^2 = c^2.
\]
Prove that \(xyz \) is a multiple of 55.

Solution. We prove that one of \(x, y, z \) is a multiple of 5 and that one of these three numbers is a multiple of 11.

a) If one of \(x, y, z \) is a multiple of 5, then so is the product \(xyz \). If none of \(x, y, z \) is a multiple of 5, then each of \(x^2, y^2, z^2 \) is congruent to 1 or \(-1\) modulo 5. If two of the three are congruent to 1 modulo 5, then their sum is congruent to 2 modulo five, so the sum cannot be a perfect square. Similar reasoning shows that two of the three cannot be congruent to \(-1\) modulo 5. Thus it is not possible that all three sums are perfect squares unless at least one of \(x, y, z \) is a multiple of 5.

b) The argument to see that at least one of \(x, y, z \) is a multiple of 11 is similar. If none of the three is a multiple of 11, then each of \(x^2, y^2, z^2 \) is congruent to an element of the set \(R = \{-2, 1, 3, 4, 5\} \) modulo 11. If
\[
x^2 \equiv y^2 \equiv r \in \{-2, 1, 3, 4, 5\},
\]
then, because \(2r \equiv 0 \pmod{11} \notin R \), \(x^2 + y^2 \) cannot be a perfect square. Thus we need only consider the case in which \(x^2, y^2, z^2 \) are congruent to three distinct elements of \(R \). Without loss of generality, we may assume
\[
x^2 \equiv r \pmod{11}, \quad x^2 \equiv s \pmod{11}, \quad x^2 \equiv t \pmod{11},
\]
with \(r, s, t \in R \) and \(r < s < t \). Because \(a^2 = x^2 + y^2 \equiv r + s \pmod{11} \) and \(b^2 = y^2 + z^2 \equiv s + t \pmod{11} \), we must also have \(r + s, s + t \) congruent (modulo 11) to elements in \(R \). It easy to check that so such ordered triple \((r, s, t)\) of elements in \(R \) satisfies these conditions. Therefore at least one of \(x, y, z \) must be a multiple of 11.

Because at least one of \(x, y, z \) is a multiple of 5, at least one os a multiple of 11, and 5 and 11 are relatively prime, it follows that \(xyz \) is a multiple of 55.

Such triples \((x, y, z)\) do exist, for example \((44, 117, 240)\).