Problem 6. MiDiOwA Airlines (slogan: We have our ups and downs), services several mid-Iowa towns, and uses the following rule to determine its air routes: If \(A \) and \(B \) are two different towns, then there is an air route connecting \(A \) with \(B \) if and only if there is no town closer to \(A \) than \(B \) or there is no town closer to \(B \) than \(A \). No other routes are created. If each distance between a pair of towns is different from the distance between every other pair of towns, prove that no town can be connected by a direct flight to more than five other towns.

Solution. Suppose there are six cities \(A_1, A_2, \ldots, A_6 \) connected by direct flights to a city \(P \). Then there is a pair \(i, j \) so that the measure of (acute) \(\angle A_i PA_j \) is at most \(60^\circ \). Without loss of generality let \(\angle A_1 CA_2 \) have measure less than \(60^\circ \). Because the distance between each pair of towns is different than the distance between any other pair, \(\triangle A_1 PA_2 \) is scalene, and the largest angle has measure greater than \(60^\circ \). We may assume, again without loss of generality, that this is \(\angle A_2 A_1 P \). Thus

\[
P A_2 > P A_1 \quad \text{and} \quad A_2 P > A_2 A_1.
\]

Thus \(A_2 \) is not the city closest to \(P \), and \(P \) is not the city closest to \(A_2 \). This contradicts the assumption that there is a direct flight between \(P \) and \(A_2 \).