Problem 15. The lengths of the three sides of a triangle form a three term arithmetic progression and the lengths of the three altitudes of the triangle also form a three term arithmetic progression. Prove that the triangle is equilateral.

Solution. Let the sides of the triangle have lengths $s, s + a, s + 2a$ in increasing order, and let the altitudes have lengths $h, h + b, h + 2b$ in increasing order. Then

$$2A = s(h + 2b) = (s + a)(h + b) = (s + 2a)h,$$

where A is the area of the triangle. This implies that

$$0 = 2(s + a)(h + b) - s(h + 2b) - (s + 2a)h = 2ab.$$

It follows that at least one of a or b is equal to 0, and then from (1) it follows that both must be equal to 0. Therefore the sides of the triangle all have length s, so the triangle is equilateral.