Problem 10. As shown in the figure below, triangle ABC is inscribed in a circle. Line ℓ is tangent to the circle at B, and D is the foot of the perpendicular from C to ℓ. Let H be the foot of the altitude from B to AC. Prove that line DH is parallel to line AB.

![Diagram of the problem](image)

Solution. It suffices to show that $\angle BAH = \angle DHC$. First note that $\angle BAH = \angle DBC$ because the two angles subtend the same arc on the circle. Next consider the circle \mathcal{C} with diameter BC. Because $\angle BDC$ and $\angle BHC$ are right angles, this circle passes through the points B, H, C, D. This $\angle DBC = \angle DHC$ because they subtend the same arc on circle \mathcal{C}. Thus it follows that $\angle BAH = \angle DHC$, so AB is parallel to DH.