Problem 9. Prove that

\[3^{2013} \] is a factor of \(2^{(3^{2013})} + 1 \).

Solution. We prove by mathematical induction that for any nonnegative integer \(m \), we have

\[3^m | (2^{(3^m}) + 1). \] \hspace{1cm} (1)

(For integers \(a \) and \(b \) the notation \(a|b \) means that \(a \) is a factor of \(b \).)

It is easy to verify that (1) is true for \(m = 0 \) and for \(m = 1 \). Now assume that (1) holds for an integer \(m \geq 1 \). Then there is a positive integer \(k \) for which

\[2^{(3^m)} + 1 = k(3^m) \] so that \(2^{(3^m)} = k(3^m) - 1 \).

Therefore

\[2^{(3^{m+1})} = \left(2^{(3^m)} \right)^3 = (k(3^m) - 1)^3 = k^3 3^{3m} - 3k^2 3^{2m} + 3k 3^m - 1. \]

From this we have

\[2^{(3^{m+1})} + 1 = 3^{m+1} (k^3 3^{2m-1} - k^2 3^m + k), \]

showing that \(3^{m+1} \) is a factor of \(2^{(3^{m+1})} + 1 \). This completes the proof that (1) is true for all nonnegative integers \(m \), and in particular for the value \(m = 2013 \).