Problem 10. In triangle ABC, point A' is on BC, B' is on CA and C' is on AB as shown below. Given that the circle through points A, B', C' and the circle through B, C', A' intersect at a point P in the interior of the triangle, prove that the circle through C, A', B' also passes through P.

![Diagram of triangle ABC with points A', B', C' and circle passing through them](image)

Solution. Draw the segments from P to each of A', B', and C'. Quadrilaterals $AC'B'P$ and $B'A'C'$ are both cyclic quadrilaterals (i.e., for each quadrilateral, the four vertices lie on a circle.) We use the following well known theorem:

Let $WXYZ$ be a quadrilateral. Then $WXYZ$ is cyclic if and only if

$$\angle X + \angle Z = 180^\circ.$$

Thus in quadrilateral $AC'PA'$ we have $\angle PB'A + \angle PC'A = 180^\circ$ and in $BA'PC'$, $\angle PC'B + \angle PA'B = 180^\circ$. Also note that $\angle PC'A + \angle PC'B = 180^\circ$. Using this we prove that in quadrilateral $CB'PA'$ we have $\angle PB'C + \angle PA'C' = 180^\circ$, which will imply that $CB'PA'$ is cyclic. We have

$$\angle PB'C = 180^\circ - \angle PB'A = 180^\circ - (180^\circ - \angle PC'A)$$
$$= \angle PC'A = 180^\circ - \angle PC'B = 180^\circ - (180^\circ - \angle PA'B)$$
$$= \angle PA'B = 180^\circ - \angle PA'C.$$

This completes the proof.