Problem 9. Given a positive integer \(n \), let \(S(n) \) denote the sum of the digits in the base-ten representation of \(n \). For example, \(S(237) = 2 + 3 + 7 = 12 \) and \(S(5) = 5 \). Define the sequence \(a_k, k = 1, 2, 3, \ldots \) by

\[
a_1 = 1 \quad \text{and} \quad a_{k+1} = a_k + S(a_k),
\]

for \(k = 1, 2, 3, \ldots \). Is there an index \(k \) such that \(a_k = 99887766554433221100 \)? If so what is the \(k \)? If not, justify your answer.