Problem 7. Is there a positive integer n such that 2^n has leading digits 77? Justify your answer.

Solution. There are infinitely many powers of 2 that start with the digits 77. The smallest such power is 2^{86} and was found by all solvers. This is a special case of a more general result:

Given any digit sequence, there are infinitely many powers of two that begin with that digit sequence.

We prove this for the digit sequence 77, but the argument generalizes in an obvious way.

We seek positive integers m and n with

$$77 \cdot 10^m \leq 2^n < 78 \cdot 10^m.$$

Thus

$$m + \log 77 \leq n \log 2 < m + \log 78,$$

where logarithms are in base 10. For real number x, let $\{x\} = x - \lfloor x \rfloor$ be the fractional part of x. First observe that because $\log 2$ is irrational, the numbers

$$\{n \log 2\}, \quad n = 1, 2, 3, \ldots$$

are distinct. Indeed if there are distinct positive integers j, k with

$$\{j \log 2\} = \{k \log 2\},$$

then $j \log 2 - k \log 2$ is an integer. But this is impossible if $\log 2$ is irrational.

Now let $\epsilon = \log 78 - \log 77$ and cut the interval $[0, 1)$ into pieces of length less than ϵ. Suppose there are N such pieces and consider the numbers

$$\{\log 2\}, \{2 \log 2\}, \ldots, \{N \log 2\}, \{(N + 1) \log 2\}.$$

By the Pigeonhole Principle, two of these numbers must be in one of the N intervals. Suppose that these two numbers are

$$\{j \log 2\} \quad \text{and} \quad \{k \log 2\},$$

with $j \lt k$. Let $M = k - j$. Then either

$$\{M \log 2\} = \delta \quad \text{or} \quad \{M \log 2\} = 1 - \delta,$$

where $\delta < \epsilon$. In the first case, when the sequence

$$\{M \log 2\}, \{2M \log 2\}, \{3M \log 2\}, \ldots,$$
is plotted in $[0, 1)$, initially, each point is less than ϵ to the right of the previous. Because $\log 78 - \log 77 = \epsilon$, there must be integers N and J so that

$$N + \log 77 \leq JM \log 2 < N + \log 78, \quad \text{that is} \quad 77 \cdot 10^N \leq 2^J < 78 \cdot 10^N,$$

and the leading two digits of 2^J are 77. A similar argument handles the $\{M \log 2\} = 1 - \delta$ case.