Problem 2. John is on a large, flat (planar) playground. He labels two points, A and B on the playground, then walks in such a way that his distance from point A is always exactly twice his distance from point B. Describe John’s walking path and supply work in support of your claim.

John’s path is a circle. In fact, it is one of the Circles of Apollonius associated with A and B.

Solution 2A. Put the problem in the coordinate plane with $A = (0, 0)$ and $B = (b, 0)$. A point $P = (x, y)$ is on John’s path if and only if

$$\sqrt{x^2 + y^2} = 2\sqrt{(x-b)^2 + y^2}.$$

Squaring both sides and simplifying we see that P is on the path if and only if

$$3x^2 + 3y^2 - 8bx + 4b^2 = 0.$$

Dividing by 3 and completing the square in x this becomes

$$\left(x - \frac{4}{3}b \right)^2 + y^2 = \frac{4}{9}b^2.$$

This shows that John’s path follows the circle of center $\left(\frac{4}{3}b, 0 \right)$ and radius $\frac{2}{3}b$.

Note. Many students arrived at an equation equivalent to the one derived here. However, not all of these students recognized that the graph of the equation is a circle.

Solution 2B. Let P be any point on John’s path and consider triangle PAB, with $PA = 2PB$. Now consider the (internal) angle bisector for $\angle P$, and let R be the point in which this bisector intersects \overline{AB}. By the angle bisector theorem

$$\frac{AR}{BR} = \frac{AP}{BP} = 2,$$

that is, R (internally) divide segment AB in the ratio 2 : 1. Thus for any P on John’s path, the angle bisector of $\angle APB$ passes through R.

A version of the angle bisector theorem is also valid for the external angles of a triangle. In particular, the external bisector at angle P will intersect line AB in a point S with

$$\frac{AS}{BS} = \frac{AP}{BP} = 2.$$
Thus for each point P on John’s path the internal bisector of $\angle P$ passes through R and the external bisector of $\angle P$ passes through S. Because these two bisectors are perpendicular at P, it follows that for any such point P, triangle RPS is a right triangle with hypotenuse RS. Hence P lies on the circle with diameter RS.

The Circles of Apollonius can also be approached through inversive geometry. Given a circle ω with center O and radius r, let A and B be points on a radial segment with

$$ AO \cdot BO = r^2. $$

Then A and B are said to be *inverses with respect to* ω. The circle ω is a Circle of Apollonius associated with A and B. In particular there is a constant λ so that for every point P on ω, we have

$$ \frac{AP}{BP} = \lambda. $$