Qualifying Examination in Analysis
Spring 2001

- Write your student identification number on every page of the solutions you hand in. Do not write your name.
- Hand in a total of 6 problems, including at least 2 from each part. You will not get partial credit for attempting any more than 6 problems.
- To pass, you must get substantial credit from both Parts I and II.

Part I. Real Analysis

1. Let \((X, \mathcal{A}, \mu)\) be an arbitrary measure space with \(\mu\) a positive measure. Recall that a measure space is \(\sigma\)-finite if \(X\) can be written as a countable union of sets of finite measure. Prove that \((X, \mathcal{A}, \mu)\) is \(\sigma\)-finite if and only if there exists a strictly positive function \(f \in L^1(\mu)\).

2. Give an example of each of the following:
 a) A function \(f\) which is unbounded but Lebesgue integrable on \((0, \infty)\).
 b) A function \(f\) which is Lipschitz continuous but not differentiable everywhere.
 c) A function \(f\) which is absolutely continuous but not Lipschitz continuous on \([0, 1]\).
 d) A sequence \(\{f_n\}\) of continuous functions on \([0, 1]\) that converges pointwise to a function \(f\) on \([0, 1]\), but \(f\) is not continuous.
 e) A sequence \(\{f_n\}\) of functions that converges to zero pointwise on \([0, 1]\) but not in \(L^1([0, 1])\).
3. Let \(p, q > 1 \) satisfy \(\frac{1}{p} + \frac{1}{q} = 1 \) and \(\Omega \subset \mathbb{R}^N \).
 a) Show that if \(f_n \to f \) in \(L^p(\Omega) \) and \(g_n \to g \) in \(L^q(\Omega) \) then \(f_n g_n \to fg \) in \(L^1(\Omega) \).
 b) Explain carefully what is meant by the statement that \(L^q(\Omega) \) is the dual space of \(L^p(\Omega) \).

4. If \(f \in L^q(\mathbb{R}^N) \) for some \(q < \infty \), show that

\[
\lim_{p \to \infty} \|f\|_{L^p} = \|f\|_{L^\infty}
\]

Also, show by example that the conclusion may be false without the assumption that \(f \in L^q(\mathbb{R}^N) \).

5. Show that

\[
f(x) = \sum_{n=1}^\infty \frac{1}{n} \sin \left(\frac{x}{n + 1} \right)
\]

converges pointwise on \(\mathbb{R} \) and uniformly on each bounded interval of \(\mathbb{R} \) to a differentiable function \(f \) which satisfies \(|f(x)| \leq |x| \).

6. Prove the Riemann-Lebesgue Lemma: For any \(f \in L^1(\mathbb{R}) \)

\[
\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) e^{inx} \, dx = 0
\]

You may use the fact that for any \(f \in L^1(\mathbb{R}) \) and any \(\epsilon > 0 \) there exists a step function \(g \in L^1(\mathbb{R}) \) such that \(\int_{-\infty}^{\infty} |f(x) - g(x)| \, dx < \epsilon \).
Part II. Complex Analysis

1. Let $\Gamma = \{ z \in \mathbb{C} : |z - (6 + i)| = 3 \}$. Evaluate $\int_{\Gamma} (\bar{z} - i)^2 \, dz$ where the orientation of Γ is in the counterclockwise direction.

2. Assume that f, g are holomorphic in the disk $D = \{ z \in \mathbb{C} : |z| < 1 \}$, continuous on \overline{D} and have no zeros in D. If $|f(z)| \equiv |g(z)|$ for $|z| = 1$, prove that $f(z) = kg(z)$ in D, for some constant k of modulus 1.

3. Evaluate $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$. (Suggestion: Integrate $\frac{\cot(\pi z)}{z^2 + 1}$ around a suitable contour.)

4. Prove that $F(z) = \sum_{n=1}^{\infty} \frac{1}{z^2 - n^2}$ is defined and holomorphic for $z \neq \pm 1, \pm 2, \ldots$.