1. Let \(R \) be the region bounded by the graph of \(y = \sin(2x) \) and the \(x \)-axis for \(0 \leq x \leq \frac{\pi}{2} \).

 (a) (2 points) Sketch a graph of \(R \).

 (b) (7 points) A solid is generated by revolving the region \(R \) about the \(x \)-axis. Set up, but do not evaluate, a definite integral for the volume of the resulting solid of revolution.

 (c) (7 points) A solid is generated by revolving the region \(R \) about the line \(x = -\pi \). Set up, but do not evaluate, a definite integral for the volume of the resulting solid of revolution.
2. (16 points) Let R be the region bounded by the graphs of $y = x^2$ and $y = a$, where a is a positive constant. Find the centroid of the region R. Make a sketch of the region and use symmetry where possible. Your answer should be simplified.
3. (16 points) An exotic aquarium with a flat base has height of 10 ft and is filled with water. At height y above the base of the aquarium, a cross section of the aquarium taken parallel to the base has area $A(y) = 20 + \sqrt{y}$ square feet. The water in the aquarium is pumped to a platform 5 ft above the top of the tank. Calculate the work done. [Use δ lb/ft3 for the weight-density of water.]
4. Let G be the graph of the curve described by the parametric equations

$$x = x(t) = 3 + e^{2t}, \quad y = y(t) = 3 + \ln(2t), \quad \text{for} \quad 1 \leq t \leq e.$$

(a) (8 points) Set up, but do not evaluate, an integral for the length of G.

(b) (8 points) Set up, but do not evaluate, the area of the surface generated when G is revolved about the x-axis.