Functions of several variables

\[Z = f(x,y) \quad \text{(two inputs)} \]
\[\omega = g(x,y,z) \quad \text{(three inputs)} \]

Example: \[Z = \frac{x^2 + y^2}{f(x,y)} \]

\[f(1,1) = Z \]
\[f(5,t) = s^2 + t^2 \]
\[f(\text{cat, dog}) = (\text{cat})^2 + (\text{dog})^2 \]
Range = possible outputs
 (hard, need calculus)

Domain = possible inputs
 Usually need to figure out where we don’t have one of the following problems:

1. \(\frac{1}{0} \) (Division by 0)
2. \(\sqrt{<0} \) (square root of negative)
3. \(\ln(\leq 0) \) (log of a non-positive)
Example: Find domain of

\[f(x,y) = \frac{\sqrt{y-x^2}}{x^2+(y-1)^2} \]

\[y \geq x^2 \]
\[x^2+(y-1)^2 \neq 0 \]

\((0,1) \)

All \((x,y)\) so that \(y \geq x^2 \) and \((x,y) \neq (0,1)\)
Example: Find domain of

\[g(x, y) = \frac{\sqrt{2x-x^2}}{\ln(x-y^2)} \]

- \[2x-x^2 \geq 0 \]
- \[0 \leq x \leq 2 \]
- \[y = 2x-x^2 \]
- \[y = x(2-x) \]
- \[x-y^2 > 0 \]
- \[x > y^2 \]
- \[x-y^2 \neq 1 \]
- \[x = y^2 + 1 \]

Graph showing the domain with values:
- \[x = 2 \]
Graph of $z = f(x,y)$
level curves

One way to understand a function is by looking at cross sections for fixed \(z \). These cross sections (contours) correspond to curves in the plane and a collection of these curves is a contour map.

- Weather maps
- Topographical maps
Reading contour plots gives us information about the behavior of the function.

Goal of contour maps is to store 3-D information in a 2-D setting.
Functions of three variables

\[w = f(x, y, z) \]

- range = all outputs
- domain = all inputs
 (look for same problems)
- graph

(Just kidding! Can't draw these)
Level surfaces

\[g(x, y, z) = K \]

Example: Find level surfaces of \(g(x, y, z) = z - x^2 - y^2 = K \)

\[z = x^2 + y^2 + K \]

![Diagram of level surfaces with labeled k values]
Notation on sets

- Empty set

Interior point — some small ball around the point is completely inside

Boundary point — every ball around the point is both in and out

Open set — every point is interior

Closed set — every boundary point in set

Bounded set — set inside of some large ball