Midterm 1 (MATH 265 – Butler)

This test is closed book and closed notes. No sophisticated calculator is allowed for this test. For full credit show all of your work (legibly!). We note \((t + 1)^3 = t^3 + 3t^2 + 3t + 1\). Each problem is worth 10 points (a total of 50 points). Failure to circle your correct section will result in a 2 point deduction.

1. Rewrite \(\rho = \frac{\cos \phi}{\sin^2 \phi (1 - \sin(2\theta))}\) in Cartesian coordinates and determine when this surface intersects the xy-plane. (It might be helpful to first put this into cylindrical coordinates, and to know \(\sin(2\theta) = 2\sin \theta \cos \theta\).)

\[
\rho \sin^2 \phi \left(1 - \sin(2\theta)\right) = \cos \phi \\
\left(\frac{\rho \sin \phi}{\rho}\right)^2 \left(1 - \sin(2\theta)\right) = \rho \cos \phi \\
\rho \sin^2 \phi \left(1 - 2\sin \theta \cos \theta\right) = \rho \cos \phi \\
Z = r^2 - r^2 \sin(2\theta) = r^2 - 2r^2 \sin \theta \cos \theta \\
= r^2 - 2r \sin \theta \cos \theta \\
\sqrt{x^2 + y^2} \quad \frac{r}{\sqrt{2}} \quad \frac{r \cos \phi}{\sqrt{x^2 + y^2}} \\
= x^2 + y^2 - 2xy \\
= x^2 - 2xy + y^2 \\
= (x - y)^2 \\
\text{intersects when} \quad Z = 0 \quad \text{which only happens when} \quad x - y = 0
\]

\[Z = (x - y)^2 \]

hits xy-plane when \(x = y\)
2. Let \(\ell_1 \) be the line segment joining \((3, 3, 2)\) with \((-1, 5, 0)\); let \(\ell_2 \) be the line segment joining \((1, 4, 3)\) with \((-3, 2, 1)\); let \(\ell_3 \) be the line segment joining \((4, 7, 6)\) with \((-2, -3, 2)\). Find the unique plane which would cut these three line segments in half (i.e., passes through their midpoints). (This is a special case of what is known as the Ham Sandwich Theorem.)

Plane passes through \((1, 4, 1), (-1, 3, 2)\) \& \((1, 2, 4)\)

Normal vector \(\langle z, 1, -1 \rangle \times \langle z, -1, 2 \rangle = \begin{vmatrix} i & j & k \\ z & 1 & -1 \\ z & -1 & 2 \end{vmatrix} = \langle 2i - 2j - 2k \rangle = \langle 1, -6, -4 \rangle \)

\(x - 6y - 4z = d \)

Plug in \((1, 4, 1)\) \(\rightarrow\) \(1 - 6 \cdot 4 - 4 \cdot 1 = -27 \Rightarrow x - 6y - 4z = -27\)
3. Find the distance traveled (i.e., length) along the curve \(\frac{x(t)}{a} + \frac{y(t)}{b} + \frac{z(t)}{c} \) between \(t = 0 \) and \(t = 3 \). Simplify your answer as much as possible.

\[
D = \int_{0}^{3} \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2} \, dt
\]

\[
= \int_{0}^{3} \sqrt{\left(t^{3/2} - t^{-1/2} \right)^2 + (-2t)^2 + (t+1)^2} \, dt
\]

\[
= \int_{0}^{3} \sqrt{t^3 - 2t^2 + t + 4t^2 + t^2 + 2t + 1} \, dt
\]

\[
= \int_{0}^{3} \sqrt{t^3 + 3t^2 + 3t + 1} \, dt
\]

\[
= (t+1)^3 \quad \text{see instructions on page 1}
\]

\[
= \int_{0}^{3} (t+1)^{3/2} \, dt
\]

\[
= \frac{2}{5} (t+1)^{5/2} \bigg|_{t=0}^{t=3}
\]

\[
= \frac{2}{5} \left(4^{5/2} - \frac{2}{5} \right)
\]

\[
= \frac{2}{5} \cdot 32 - \frac{2}{5} \cdot 1
\]

\[
= \frac{64 - 2}{5} = \frac{62}{5}
\]

\[
= \sqrt{\frac{62}{5}}
\]
4. Find the tangent line to \(r(t) = (e^{2t} - 3t, \sin(2t) - \cos(t), t^2 - 2t + 4) \) at \(t = 0 \). Give your answer in parametric form.

\[
r(t) = (e^{2t} - 3t, \sin(2t) - \cos(t), t^2 - 2t + 4)
\]

\[
r'(t) = (2e^{2t} - 3, 2\cos(2t) + \sin(t), 2t - 2)
\]

\[
r(0) = (1, -1, 4) \quad \text{← position}
\]

\[
r'(0) = (-1, 2, -2) \quad \text{← direction}
\]

\[
\begin{align*}
x &= 1 - t \\
y &= -1 + 2t \\
z &= 4 - 2t
\end{align*}
\]

↑↑ direction
5. (a) For \(t > 0 \), find \(\kappa(t) \) for \(r(t) = \langle \ln t, 2t, t^2 \rangle \).

\[
\begin{align*}
r(t) &= \langle \ln t, 2t, t^2 \rangle \\
r'(t) &= \langle \frac{1}{t}, 2, 2t \rangle \\
r''(t) &= \langle -\frac{1}{t^2}, 0, 2 \rangle
\end{align*}
\]

\[
\begin{align*}
r'(t) \times r''(t) &= \begin{vmatrix} i & j & k \\
\frac{1}{t} & 2 & 2t \\
-\frac{1}{t^2} & 0 & 2 \\
\end{vmatrix} \\
&= 4i - \frac{2}{t}j + 0k \\
&= \langle 4, -\frac{2}{t}, 0 \rangle
\end{align*}
\]

\[
\|r'(t)\| = \sqrt{\left(\frac{1}{t^2}\right)^2 + (2)^2 + (2t)^2} = \sqrt{\frac{1}{t^4} + 4 + 4t^2} = \sqrt{\frac{1}{t^2}(1 + 4t^2 + 4t^4)}
\]

\[
= \sqrt{\frac{1}{t} \left(1 + 2t^2 \right)^2} = \frac{1}{t} \left(1 + 2t^2 \right)
\]

\[
\|r'(t) \times r''(t)\| = \sqrt{4^2 + \left(-\frac{2}{t} \right)^2 + \left(\frac{2}{t^2} \right)^2} = \sqrt{16 + \frac{4}{t^2} + \frac{4}{t^4}}
\]

\[
= \sqrt{\frac{4}{t^4} \left(4t^4 + 4t^2 + 1 \right)} = \frac{2}{t} \left(1 + 2t^2 \right)
\]

\[
k(t) = \frac{\frac{2}{t^2} \left(1 + 2t^2 \right)}{\left(\frac{1}{t} \left(1 + 2t^2 \right) \right)^3} = \frac{\frac{2}{t^2} \left(1 + 2t^2 \right)}{\frac{1}{t^3} \left(1 + 2t^2 \right)^3} = \frac{2t}{\left(1 + 2t^2 \right)^2}
\]

(b) Determine the \(t \) which maximizes \(\kappa(t) \) found in part (a).
(It suffices to find \(t \), you do not need to prove why it is maximal.)

Maximized when \(k'(t) = 0 \)

\[
k'(t) = \frac{(1+2t^2)^2 \cdot 2t - 2t \cdot 2(1+2t^2) \cdot 4t}{(1+2t^2)^2} = 0
\]

\[
= 2 \cdot (1+2t^2) \left[(1+2t^2) - 8t^2 \right] = 0
\]

\[
= 2 \cdot (1+2t^2) \left[1 - 6t^2 \right] = 0
\]

\[
\Rightarrow t^2 = \frac{1}{6} \quad \text{or} \quad t = \frac{1}{\sqrt{6}}
\]
This test is closed book and closed notes. No sophisticated calculator is allowed for this test. For full credit show all of your work (legibly!). The volume of a cone is $\frac{1}{3}(\text{base})(\text{height})$. Each problem is worth 10 points (a total of 50 points). Failure to circle your correct section will result in a 2 point deduction.

1. The point $(2, 1, 3)$ is the midpoint of the points P and Q. If the point P lies on the line $\langle x, y, z \rangle = \langle 5, 2, 4 \rangle + t\langle 2, -3, 1 \rangle$, then Q lies on some other line. Determine this other line and give it in parametric form.

$$Q = (x, y, z)$$

$$\text{midpoint} = (2, 1, 3) = \left(\frac{x + (5+2t)}{2}, \frac{y + (2-3t)}{2}, \frac{z + (4+t)}{2} \right)$$

$$(5+2t, z-3t, 4+t)$$

\[
\begin{align*}
 x + (5+2t) &= 4 \\
 y + (2-3t) &= 2 \\
 z + (4+t) &= 0
\end{align*}
\]

\[
\begin{align*}
 x &= -1 - 2t \\
 y &= 3t \\
 z &= z - t
\end{align*}
\]
2. Sketch the region and find the volume of all points satisfying $z - 1 \leq r \leq \frac{1}{3}z + 1$. (Hint: rewrite inequalities in terms of z, what shape(s) bound this region?)

$\frac{2}{3}z + 1 \leq r$ or $z \leq r + 1 \leftarrow$ cone shifted up by 1

$\frac{1}{3}z + 3 \geq r - 1$ or $z \geq 3r - 3 \leftarrow$ cone stretched and shifted down by 3

Region is between these two cones

$r + 1 = 3r - 3$ or $2r = 4$

Intersection if

or $r = 2$

Corresponds to $z = 3$

Volume of cone $= \frac{1}{3} \cdot \text{(base)} \cdot \text{(height)}$

Volume = $\frac{1}{3} \cdot \pi \cdot z \cdot 1 - \frac{1}{3} \cdot \pi \cdot z \cdot 1$

= $\frac{1}{3} \cdot \pi \cdot z^2 \cdot 6 - \frac{1}{3} \cdot \pi \cdot z^2 \cdot 2$

= $\frac{24}{3} \pi - \frac{8}{3} \pi$

= $\frac{16}{3} \pi$
3. Find the distance traveled along the curve \((\frac{1}{3} t^5 - \frac{1}{2} t^4 + 1, \frac{\sqrt{3}}{4} t^4 + 3, \frac{4}{9} t^{9/2} + 7)\) between \(t = 0\) and \(t = 4\). (You do not have to simplify after evaluating the integral; but it does simplify.)

\[
D = \int_0^4 \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} \, dt
\]

\[
= \int_0^4 \sqrt{(t^4 - 2t^3)^2 + (\frac{\sqrt{3}}{4} t^4)^2 + (\frac{4}{9} t^{9/2})^2} \, dt
\]

\[
= \int_0^4 \sqrt{t^8 - 4t^7 + 4t^6 + 5t^6 + 4t^4} \, dt
\]

\[
= \int_0^4 \sqrt{t^8 + 9t^6} \, dt
\]

\[
= \int_0^4 t^6 (t^2 + 9) \, dt
\]

\[
= \int_0^4 t^6 \sqrt{u} \, du
\]

\[
= \int_0^{t^2 + 9} \frac{1}{2} u^{1/2} \, du
\]

\[
= \frac{1}{2} \int_0^{t^2 + 9} \frac{1}{2} u^{1/2} \, du
\]

\[
= \left[\frac{1}{5} u^{5/2} - 3u^{3/2} \right]_{u=25}^{u=9}
\]

\[
= \left(\frac{1}{5} 25^{5/2} - 3 \cdot 25^{3/2} \right) - \left(\frac{1}{5} \cdot 9^{5/2} - 3 \cdot 9^{3/2} \right)
\]

\[
= \left(\frac{1}{5} \cdot 25^{5/2} - 3 \cdot 25^{3/2} \right) - \left(\frac{1}{5} \cdot 9^{5/2} - 3 \cdot 3^{3} \right)
\]

\[
= \left(\frac{1}{5} \cdot 5^5 - 3 \cdot 5^3 \right) - \left(\frac{243}{5} - 81 \right)
\]

\[
= 331 \cdot \frac{243}{5} = \frac{1655}{5} - \frac{243}{5} = \frac{1412}{5}
\]

\[\text{OK to stop here}\]
4. Find the osculating plane to \(r(t) = \langle e^{2t} - 3t, \sin(2t) - \cos(t), t^2 - 2t + 4 \rangle \) at \(t = 0 \). (Recall the osculating plane contains the point, the direction of motion, and the direction of acceleration.)

So we can use \(r'(t) \times r''(t) \)

\[
\begin{align*}
r(t) &= \langle e^{2t} - 3t, \sin(2t) - \cos(t), t^2 - 2t + 4 \rangle \\
r'(t) &= \langle 2e^{2t} - 3, 2\cos(2t) + \sin(t), 2t - 2 \rangle \\
r''(t) &= \langle 4e^{2t}, -4\sin(4t) + \cos(t), 2 \rangle \\
r(0) &= \langle 1, -1, 4 \rangle \quad \text{point on plane} \\
r'(0) &= \langle -1, 2, -2 \rangle \\
r''(0) &= \langle 4, 1, 2 \rangle
\end{align*}
\]

\[
r'(0) \times r''(0) = \begin{vmatrix} i & j & k \\ -1 & 2 & -2 \\ 4 & 1 & 2 \end{vmatrix} = 4i - 8j - k \\
= 6i - 6j - 9k \\
= \langle 6, -6, -9 \rangle
\]

For convenience, we can scale by \(\frac{1}{3} \)

\[
2x - 2y - 3z = -8
\]

Plug in point \((1, -1, 4)\)

\[
2x - 2y - 3z = -8
\]
5. (a) For \(t > 0 \), find \(a_T \) (i.e., the amount of acceleration pointing in the direction of motion) for \(r(t) = \langle \ln t, 2t, t^2 \rangle \).

\[
\frac{r'(t) \cdot r''(t)}{\|r'(t)\|}
\]

\[
r(t) = \langle \ln t, 2t, t^2 \rangle
\]
\[
r'(t) = \langle \frac{1}{t}, 2, 2t \rangle
\]
\[
r''(t) = \langle -\frac{1}{t^2}, 0, 2 \rangle
\]

\[
\|r'(t)\| = \sqrt{\left(\frac{1}{t}\right)^2 + (2)^2 + (2t)^2} = \sqrt{\frac{1}{t^2} + 4 + 4t^2} = \sqrt{\frac{1}{t^2}(1 + 4t^2 + 4t^4)}
\]

\[
= \sqrt{\frac{1}{t^2}(1 + 2t^2)^2} = \frac{1}{t}(1 + 2t^2)
\]

\[
r'(t) \cdot r''(t) = \langle \frac{1}{t}, 2, 2t \rangle \cdot \langle -\frac{1}{t^2}, 0, 2 \rangle = -\frac{1}{t^3} + 4t = \frac{1}{t^3}(4t^4 - 1)
\]

\[
a_T = \frac{\frac{1}{t^3}(4t^4 - 1)}{\frac{1}{t}(1 + 2t^2)} = \frac{4t^4 - 1}{t^2(1 + 2t^2)}
\]

(b) Use part (a) to determine the \(t \) when acceleration is perpendicular to motion.

\(a_T = 0 \) means

\[
\frac{4t^4 - 1}{t^2(1 + 2t^2)} = 0 \implies 4t^4 - 1 = 0
\]

\[
\implies t^4 = \frac{1}{4}
\]

\[
\implies t = \sqrt[4]{\frac{1}{4}} = \frac{1}{\sqrt[4]{4}} = \frac{1}{\sqrt{2}}
\]