1. Let G be a connected graph such that for any edge e of G there are two cycles which intersect only in that edge. Prove that G is 3-edge-connected. Use this to show the Petersen graph is 3-edge-connected.

2. Given $0 < k \leq \ell \leq m$ construct a graph G with $\kappa(G) = k$, $\lambda(G) = \ell$ and $\delta(G) = m$ (i.e., vertex-connectivity k, edge-connectivity ℓ and minimum degree m).

3. Recall that a directed graph is strongly connected if there is a directed path between any two vertices. Show that an undirected graph G is 2-edge-connected if and only if there is a way to orient G to form the directed graph \vec{G} (i.e., where each edge is assigned one of the two possible orientations) so that \vec{G} is strongly connected.

4. Given that G is k-connected show that any k vertices lie on some cycle in the graph.