1. For a graph G the (multi-)set of degrees is called its degree sequence. Show that if there is a simple graph G with $|E| \geq |V| - 1$, and no isolated vertices, then there is a simple graph H which is connected and has the same degree sequence (so must also have the same number of edges as well as no isolated vertices).

2. Let G be a k-regular bipartite graph with $k \geq 2$. Show that $\kappa(G) \neq 1$.

3. Let G be a simple graph on $2n$ vertices with all degrees at least n. Show that G has a 1-factor (i.e., a maximum matching with n edges).

4. Let M be a matching in a bipartite graph G. Show that if M is sub-optimal, i.e., contains fewer edges than some other matching in G, then G contains an augmenting path with respect to M. Does this generalize to matchings in non-bipartite graphs?