1. (a) Show that the number of labelled trees on \(n \) vertices where vertex \(i \) has degree \(d_i \) is
\[
\frac{(n - 2)!}{(d_1 - 1)! (d_2 - 1)! \cdots (d_n - 1)!}.
\]
(b) Using the multinomial theorem show that part (a) implies Cayley’s Theorem that the number of labelled trees is \(n^{n-2} \).

(Note: part (a) can be proved easily using Prüfer codes or directly, the latter case along with (b) gives another proof of Cayley’s Theorem.)

2. A tournament on \(n \) vertices is a directed graph which is formed by taking the edges of \(K_n \) and assigning each edge between a pair of vertices, \(u \) and \(v \), one of the two possible orientations, i.e., \(u \leftarrow v \) or \(u \rightarrow v \). In particular there are \(2^{\binom{n}{2}} \) such graphs on \(n \) vertices.

Show that in each tournament there is a directed path that visits each vertex exactly once.

3. Let \(G \) be a multi-graph, i.e., a graph which can have multiple edges between pairs of vertices. Given an edge \(e = \{u, v\} \), let \(G - e \) be the graph resulting from the deletion of the edge \(e \) from \(G \) and let \(G \setminus e \) be the graph resulting from removing \(e \) and then identifying (i.e., merging) vertices \(u \) and \(v \) together into a new vertex \(w \) and then adding an edge \(x \sim w \) for each edge \(x \sim u \) or \(x \sim v \).

If \(t(G) \) is the number of spanning trees of \(G \), show that
\[
t(G) = t(G - e) + t(G \setminus e).
\]

4. Recall that given two graphs \(G = (V(G), E(G)) \) and \(H = (V(H), E(H)) \) the Cartesian product is \(G \Box H \) which has vertex set \(V(G) \times V(H) = \{(u, v) : u \in V(G), v \in V(H)\} \) and an edge \((u, v) \sim (x, y) \) if and only if either \((u = x \text{ and } v = y) \) or \((u \sim x \text{ and } v = y) \). Given that \(G \) and \(H \) are non-empty graphs show the following:
- \(G \Box H \) is isomorphic to \(H \Box G \).
- \(G \Box H \) is bipartite if and only if both \(G \) and \(H \) are bipartite.
- \(G \Box H \) is connected if and only if both \(G \) and \(H \) are connected.

5. Show that every graph \(G \) on \(n \) vertices has a bipartite subgraph \(H \) where
\[
|E(H)| \geq \frac{|E(G)|}{2}.
\]

(Hint: this can be done using induction on \(n \).)