THE MEAN VALUE THEOREM

This note presents a theorem of fundamental importance sometimes known as the Mean Value Inequality.

Theorem 1 (Mean Value Theorem). Let \(U \subset \mathbb{R}^n \) be open, and let \(f : U \to \mathbb{R}^m \) be a \(C^1 \) function. Let \(a, b \in U \) and assume further that the segment \(\{a + t(b - a) : 0 \leq t \leq 1\} \subset U \). Let
\[
M = \max_{0 \leq t \leq 1} \|Df(a + t(b - a))\|.
\]
Then
\[
\|f(b) - f(a)\| \leq M \|b - a\|.
\]

Proof. It suffices to prove that for every \(\varepsilon > 0 \) the inequality (1) is true when \(M \) is replaced by \(M + \varepsilon \).

Let \(\varepsilon > 0 \) be given.

Call \(t \in [0, 1] \) an \(S \)-point if for every \(s \) with \(0 \leq s < t \),
\[
\|f(a + s(b - a)) - f(a)\| \leq (M + \varepsilon) s \|b - a\|
\]
Note that if \(t \) is an \(S \)-point, then
- (a) every \(t' \) with \(0 \leq t' < t \) is also an \(S \)-point;
- (b) inequality (2) holds for \(s = t \), by the continuity of \(f \).

Let \(S \) be the set of \(S \)-points. We will prove that \(S = [0, 1] \). This is obviously a stronger statement than the Theorem.

We begin by proving that \(S \) is not empty.

Since \(f \) is differentiable at \(a \), there exists \(\delta > 0 \) such that whenever \(\|h\| < \delta \),
\[
\|f(a + h) - f(a)\| \leq \|Df(a) \cdot h\| + \varepsilon \|h\|
\leq \|Df(a)\| \cdot \|h\| + \varepsilon \|h\|
\leq (M + \varepsilon) \|h\| \quad (\text{Since } \|Df(a)\| \leq M.)
\]
This proves that \(\delta_0 = \delta/\|b - a\| \) is an \(S \)-point: for any \(s \) with \(0 \leq s < \delta_0 \) we take \(h = s(b - a) \) in the inequality just proved, and derive (2).

The proof is now complete: by the remarks (a) and (b) above, \(S \) is a closed subinterval of \([0, 1]\) containing 0. No \(t < 1 \) is an upper bound for \(S \) because we can apply the argument just given to show that whenever \(t < 1 \) and \(t \in S \) there is some \(\delta_0 > 0 \) so that \(t + \delta_0 \in S \). \(\square \)