On C-det spectral and C-det-convex Matrices

NATÁLIA BEBIANO
Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, Portugal

YIU-TUNG POON
Department of Mathematics, Iowa State University, Ames, IO 50011, U.S.A.

and

JOÃO DA PROVIDÊNCIA
Departamento de Física, Universidade de Coimbra, 3000 Coimbra, Portugal

(Received July 1, 1987; in final form March 2, 1988)

Denote by U_n, the group of the $n \times n$ unitary matrices. Let A be a complex $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ and $C = \text{diag}(c_1, \ldots, c_n) \in \mathbb{C}^n$. The set

$$\Delta_n(A) = \{\det(C + UAU^*: U \in U_n)\}$$

of complex numbers will be called the determinantal range of A. Let $P_n(A)$ be the convex hull of $\{\sum_{\sigma \in S_n} \sigma(C + UAU^*): C \in \mathbb{C}^n\}$. The matrices for which $\Delta_n(A) = \delta_n(A)$ and $P_n(A) = A_n(A)$ are investigated. Some new analogies between $A_n(A)$ and the well-known c-numerical range of A are found. Also, the interesting interplay between the geometric properties of $A_n(A)$ and the algebraic properties of A is re-examined and strengthened by the results obtained here. A necessary and sufficient condition for the convexity of $A_n(A)$ in terms of the eigenvalues of A and C for 3×3 normal matrices is given. A sufficient condition for the convexity of $A_n(A)$ when A and C are, respectively, a 3×3 matrix and a 3×3 normal matrix is presented.

1. INTRODUCTION

Denote by U_n the group of $n \times n$ unitary matrices. Given an $n \times n$ complex matrix A with eigenvalues $\lambda_j, 1 \leq j \leq n$, and a complex row vector $c = (\gamma_1, \ldots, \gamma_k)$, let $C = \text{diag}(\gamma_1, \ldots, \gamma_k)$. Define the complex set
of points
\[\Delta_c(A) := \{ \det(C + UAU^*) : U \in \mathcal{U}_n \}, \]
which will be called the c-determinantal range of \(A \). This set is compact and connected. However, as it has been shown in [4], it may not be simply connected.

Let
\[P_c(A) = \text{Co} \left\{ \prod_{j=1}^{n} (v_j + z_{\sigma(j)}) : \sigma \in S_n \right\}, \]
where Co\{ \cdot \} is the convex hull of the set \{ \cdot \} and \(S_n \) is the symmetric group of degree \(n \). The set \(P_c(A) \) will be called the c-det-eigenpolygon of \(A \). Define the c-det-spectral radius of \(A \)
\[\delta_c(A) = \max \{ \|z\| : z \in P_c(A) \}, \]
and the c-determinantal radius
\[d_c(A) = \max \{ \|z\| : z \in \Delta_c(A) \}. \]
The points \(z_\sigma = \prod_{j=1}^{n} (v_j + z_{\sigma(j)}) \), \(\sigma \in S_n \), will be called \(\sigma \)-points. Since the \(n! \) \(\sigma \)-points all belong to \(\Delta_c(A) \), the following relation holds
\[\delta_c(A) \leq d_c(A). \]
We shall call \(A \) c-det-convex if
\[P_c(A) = \Delta_c(A) \]
and c-det-spectral if
\[d_c(A) = \delta_c(A). \]
The main purpose of this note is the characterization of the c-det-convex and the c-det-spectral matrices.

In particular, a necessary and sufficient condition for the convexity of \(\Delta_c(A) \) in terms of the eigenvalues of \(A \) and \(C \) for \(3 \times 3 \) normal matrices is presented.

Also, an improvement of Theorem 2 of [3] is given (Theorem 2.2). We emphasize the curious interplay between the geometric properties of \(\Delta_c(A) \) and the algebraic properties of \(A \) which underlies our results. Moreover, we observe that certain analogies can be found between our situations and the corresponding ones concerning the set \(W_c(A) = \{ \text{tr}(AUU^*) : U \in \mathcal{U}_n \} \), called the c-numerical range of \(A \). These
analogies, which have already been pointed out in previous works ([2], [3], [4]) are reexploited and remarked throughout this note. In particular, we observe the analogy between some of our results and parallel results for $W_f(A)$ due to Au-Yeung, Poon [1] and Li, Tam, Tsing [6], [7].

2. C-DET-SPECTRAL MATRICES

We denote by $M_n(C)$ the linear space of $n \times n$ complex matrices and by $s(A)$, the spectrum of A. Let z belong to the boundary $\partial \Delta_c(A)$ of $\Delta_c(A)$. If, in the neighborhood of z, $\Delta_c(A)$ is contained in an angle with vertex at z and measuring less than π, then z is called a corner.

LEMMA 2.1 (see [2, Theorem 2]) If $0 \neq z \in \partial \Delta_c(A)$ is a corner, then z is a σ-point.

LEMMA 2.2 (see [3, Corollary 3]) Let

$$A = \begin{bmatrix}
\lambda_1 & a_{12} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots & \vdots \\
a_{n1} & \cdots & \lambda_n
\end{bmatrix} \in M_n(C)$$

and $c = (\gamma_1, \ldots, \gamma_n) \in C^n$. If $\prod_{j=1}^n (\gamma_j + z_j) \in \partial \Delta_c(A)$, then $a_{ij} = 0$ for $\gamma_i \neq \gamma_j$ ($i \neq j$).

In the rest of this section, for $c = (\gamma_1, \ldots, \gamma_n) \in C^n$, we always assume,

$$c_1 = \gamma_1 = \cdots = \gamma_{n_1},$$
$$c_2 = \gamma_{n_1} + 1 = \cdots = \gamma_{n_1 + n_2},$$
$$\vdots$$
$$c_k = \gamma_{n_1 + \cdots + n_{k-1} + 1} = \cdots = \gamma_{n_1 + \cdots + n_k},$$

where $n_1 + \cdots + n_k = n$ and c_1, \ldots, c_k are distinct.

THEOREM 3.1 Let $c = (\gamma_1, \ldots, \gamma_n) \in C^n$ and $A \in M_n(C)$. Then A is c-det-spectral if and only if A is unitarily similar to $A_1 \oplus \cdots \oplus A_k$, where $A_j \in M_{n_j}(C), j = 1, \ldots, k$ with $d_i(A) = \prod_{j=1}^{n_j} \det(c_j I_{n_j} + A_j)$.

Proof (\Rightarrow) Let $\delta_c(A) = \prod_{j=1}^n (\gamma_j + z_{n(j)}), \sigma \in S_n$. By Schur's Triangularization Theorem, we can write $A = UDU^*$, where D is a diagonal matrix with $d_i(A)$ on its diagonal. Then A is unitarily similar to $A_1 \oplus \cdots \oplus A_k$, where $A_j = U_j D_j U_j^*$, $j = 1, \ldots, k$, and D_j is a diagonal matrix with $d_i(A)$ on its diagonal, $i = 1, \ldots, n_j$. Therefore, A is c-det-spectral.

Proof (\Leftarrow) Let $\delta_c(A) = \prod_{j=1}^n (\gamma_j + z_{n(j)}), \sigma \in S_n$. By Schur's Triangularization Theorem, we can write $A = UDU^*$, where D is a diagonal matrix with $d_i(A)$ on its diagonal. Then A is unitarily similar to $A_1 \oplus \cdots \oplus A_k$, where $A_j = U_j D_j U_j^*$, $j = 1, \ldots, k$, and D_j is a diagonal matrix with $d_i(A)$ on its diagonal, $i = 1, \ldots, n_j$. Therefore, A is c-det-spectral.
gularization Lemma, \(A \) is unitarily similar to
\[
\begin{bmatrix}
 z_{\sigma(1)} & a_{ij} \\
 & \ddots \\
 0 & & z_{\sigma(n)}
\end{bmatrix}.
\]
For simplicity, we assume that \(\sigma \) is the identity permutation. Since
\[
d_\sigma(A) = \delta_\sigma(A), \prod_{j=1}^{n} \left(\gamma_j + z_{\sigma(j)} \right) \in \delta A_\sigma(A).
\]
By Lemma 2.2, \(a_{ij} = 0 \) for \(j \neq i \) (\(i < j \)), and the result follows.

(\(\Rightarrow \)) By the assumptions in the hypothesis, \(A \) is unitarily similar to
\(A_1 \oplus \cdots \oplus A_k \). Since the eigenvalues of \(A_j, j = 1, \ldots, k, \) are eigenvalues of
\(A \) and
\[
d_\sigma(A) = \prod_{j=1}^{k} \det(c_j I_{n_j} + A_j),
\]
we have
\[
d_\sigma(A) = \prod_{j=1}^{k} \left(\gamma_j + z_{\sigma(j)} \right)
\]
for some \(\sigma \in S_n \). Thus, \(d_\sigma(A) \leq \delta_\sigma(A) \). As \(\delta_\sigma(A) \leq d_\sigma(A) \), the result follows.

The following two corollaries are obvious consequences of this theorem.

Corollary 2.1 Suppose \(c = (\gamma_1, \ldots, \gamma_n) \in \mathbb{C}^n \) is such that the \(\gamma_j \)'s are
distinct and \(A \in M_\sigma(\mathbb{C}) \). If \(A \) is \(c \)-det-spectral, then \(A \) is normal.

We recall that \(A \) is said to be unitarily irreducible if it is not unitarily
similar to the direct sum \(A_1 \oplus \cdots \oplus A_k \) of two matrices \(A_1, A_2 \).

Corollary 2.2 Suppose \(A \in M_\sigma(\mathbb{C}) \) is unitarily irreducible. Then the
following conditions are equivalent:

(i) \(A \) is \(c \)-det-spectral;

(ii) \(C \) is a scalar matrix;

(iii) \(A \) is \(c \)-det-convex.

The following theorem is analogous to Theorem 3.1 of [7].

Theorem 2.2 Let \(c = (\gamma_1, \ldots, \gamma_n) \in \mathbb{C}^n \) and \(A \in M_\sigma(\mathbb{C}) \). If there exists
\(\sigma \in S_n \) such that \(z_\sigma = \prod_{j=1}^{n} \left(\gamma_j + z_{\sigma(j)} \right) \in \delta A_\sigma(A) \), then \(A \) is unitarily similar to
\(A_1 \oplus \cdots \oplus A_k \), where \(A_i \in M_\sigma(\mathbb{C}) \), \(1 \leq i \leq k \), is an upper triangular
matrix. Moreover, each \(A_j \) is of the form \(\text{diag}(z_{j,1}^{(1)}, \ldots, z_{j,n}^{(1)}) \oplus B_j \), where
By Schur's Triangularization Lemma, A is unitarily similar
to an upper triangular matrix. Since $\Delta_i(A)$ is unitarily invariant, the
first assertion is an obvious consequence of Lemma 2.2. Moreover, we
may assume that each A_i is of the form

\[
A_i = \begin{bmatrix}
 a(i,j) \\
 a(j,i) \\
 \vdots \\
 0 \\
 a(n,j)
\end{bmatrix}
\]

with $a(i,0), a(n,0) \in s(A_i)$ and $a(n,1), \ldots, a(n,i) \notin \bigcup_{i \neq j} s(A_j)$. We are
going to prove that $a(i,j) = 0$ for all $i < j$. For simplicity, we assume that σ is the identity, $A_1 \oplus \cdots \oplus A_k = (a_{ij})$
and $(a_1, \ldots, a_k) = (a(1,1), \ldots, a(n,k), \ldots, a(n,k)).$

Since $1 \leq p \leq m_i$, there exists $j \neq i$ such that $a(i,j) = a(j,i)$ for some $1 \leq r \leq n_j$. Let $s = n_1 + \cdots + n_{i-1} + p$, $r = n_1 + \cdots + n_{j-1} + r$ and
c' = $(\gamma_1', \ldots, \gamma_n')$ be the vector obtained from c by switching γ_j and γ_i. We have

\[
\prod_{j=1}^{n} (\gamma_j + x_j) = \prod_{j=1}^{n} (\gamma_j + x_j) \in \Delta_\sigma(A) = \Delta_\sigma(A).
\]

For each $p < q \leq n$, let $u = n_1 + \cdots + n_{i-1} + p$. We have $s < u \leq n_1 + \cdots + n_i$. Thus, by Lemma 2.2, $a(i,j) = a(u,v) = 0$ because $\gamma_j = \gamma_i = \gamma_j = \gamma_i$.

COROLLARY 2.3 Let $c = (\gamma_1, \ldots, \gamma_n) \in \mathbb{C}^n$ and A be a c-det-spectral
matrix. If C is an eigenvalue of A with multiplicity p such that $p > \max_{1 \leq i \leq k} n_i$, then A is unitarily similar to $xI_p \oplus B$, where $B \in M_{n-p}(\mathbb{C})$.

COROLLARY 2.4 Let $C = I_m \oplus 0_{n-m}$, and $A \in M_n(\mathbb{C})$. If

\[
d_i(A) = \prod_{j=1}^{m} (1 + x_{\sigma(j)}) \prod_{j=m+1}^{n} x_{\sigma(j)}
\]

for some $\sigma \in S_n$, then A is unitarily similar to $A_1 \oplus A_2$, where $A_1 \in M_m(\mathbb{C})$ and

\[
A_1 = \text{diag}(\lambda_1, \ldots, \lambda_j) \oplus B_1, \quad A_2 = \text{diag}(\mu_1, \ldots, \mu_k) \oplus B_2.
\]
where \(s(B_2) \cap s(B_1) = \emptyset \), \(s(B_1) \cap s(A_2) = \emptyset \) and
\[
\{\lambda_1, \ldots, \lambda_s\} = \{\mu_1, \ldots, \mu_s\} = s(A_1) \cap s(A_2).
\]

Remark 1 Compare this corollary with Theorem 4.8 of [6].

3. C-DET-CONVEX MATRICES

Theorem 3.1 (cf. [7, Theorem 4.1]) Let \(c = (\gamma_1, \ldots, \gamma_n) \in \mathbb{C}^n \); \(A \in M_n(\mathbb{C}) \) be such that the origin is not a vertex of \(P_c(A) \). Then \(A \) is c-det-convex if and only if \(\partial \Delta_c(A) \) is a convex polygon in \(\mathbb{C} \).

Proof (\(\Rightarrow \)) Clear.

(\(\Leftarrow \)) The inclusion \(P_c(A) \subseteq \Delta_c(A) \) is a trivial consequence of the hypothesis. On the other hand, every vertex of \(\Delta_c(A) \) is a corner and thus, by Lemma 2.1, is a \(\sigma \)-point. Therefore, every vertex of \(\Delta_c(A) \) is in \(P_c(A) \). Hence, \(\Delta_c(A) \subseteq P_c(A) \). This proves the theorem. \(\square \)

Theorem 3.2 Let \(c = (\gamma_1, \ldots, \gamma_n) \in \mathbb{C}^n \) and \(A \in M_n(\mathbb{C}) \) with \(s(A) = \{x_1, \ldots, x_n\} \). The following are equivalent:

(i) \(\Delta_c(A) \) is a point of \(\mathbb{C} \setminus \{0\} \);

(ii) \(P_c(A) \) is a point of \(\mathbb{C} \setminus \{0\} \) and \(A \) is c-det-convex;

(iii) either \(A \) or \(C \) is a scalar matrix and \(\prod_{i=1}^n (\gamma_i + x_i) \neq 0 \).

Proof (iii) \(\Rightarrow \) (ii) Trivial.

(i) \(\Rightarrow \) (iii) Suppose (i) is satisfied and \(\gamma_i \neq \gamma_j \) for some \(1 \leq i < j \leq n \). We will first prove that \(A \) is normal. For simplicity, assume \(\gamma_1 \neq \gamma_2 \) and \(A = (a_{ij}) \) is upper triangular. Then for every \(1 \leq i < j \leq n \), choose \(\sigma \in S_n \) such that \(\sigma(i) = 1, \sigma(j) = 2 \). Let \(c' = (\gamma_{\sigma(1)}, \ldots, \gamma_{\sigma(n)}) \), then we have
\[
\prod_{k=1}^n (\gamma_{\sigma(k)} + x_k) \in \Delta_c(A) = \Delta_{c'}(A) = \partial \Delta_{c'}(A)
\]
and \(\gamma_{\sigma(i)} \neq \gamma_{\sigma(j)} \). Thus, by Lemma 2.2, \(a_{ij} = 0 \). Hence, \(A \) is normal. Since \(\gamma_1 \neq \gamma_2 \) and \(\prod_{i=1}^n (\gamma_i + x_{\sigma(i)}) \) is non-zero and independent of \(\sigma \in S_n \), it follows that \(x_1 = \cdots = x_n \) and \(A \) is a scalar matrix. \(\square \)

Remark 2 If \(A = \text{diag}(1, 1, -1) \) and \(c = (1, -1, -1) \), then direct computation shows that \(\Delta_c(A) = \{0\} \) but neither \(A \) nor \(C \) is a scalar matrix.

Suppose now that \(c = (\gamma_1, \gamma_2, \gamma_3) \) and \(A = \text{diag}(x_1, x_2, x_3) \). In [5], an example has been given such that \(\Delta_c(A) \) is not convex. Our next theorem
provides a necessary and sufficient condition for \(\Delta_\nu(A) \) to be convex. This theorem and its proof is parallel to similar results in [1] on the \(\nu \)-numerical range \(W_\nu(A) \).

Recall that an \(n \times n \) matrix \(S = (s_{ij}) \) is said to be orthostochastic (o.s.) if there exists a unitary matrix \((u_{ij}) \) such that \(s_{ij} = |u_{ij}|^2 \). Let \(O_n \) be the set of all \(n \times n \) o.s. matrices.

Given \(u = (u_{ij}) \in \mathbb{U}_n \), we have [5]

\[
\det(C + UAU^*) = \gamma_1 \gamma_2 \gamma_3 + z_1 z_2 \gamma_3 + c S \bar{a}^T + \bar{c} a^T
\]

where \(a = (x_2, x_3, x_4), \bar{a} = (x_2 x_3, x_3 x_4, x_4 x_2), \bar{c} = (x_2 x_3, x_3 x_4, x_4 x_2) \) and \(S = (|u_{ij}|^2) \). Thus, putting \(D(S) = \gamma_1 \gamma_2 \gamma_3 + z_1 z_2 \gamma_3 + c S \bar{a}^T + \bar{c} a^T \) for \(S \in O_n \), we have \(\Delta_\nu(A) = \{ D(S) : S \in O_n \} \). Since \(O_n \) is star shaped [1] with respect to the matrix

\[
S_0 = \begin{bmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3
\end{bmatrix}
\]

and \(D(tS_1 + (1 - t)S_2) = tD(S_1) + (1 - t)D(S_2) \) for \(0 \leq t \leq 1, S_1, S_2 \in O_3 \), we have

Lemma 3.1 \(\Delta_\nu(A) \) is star shaped with respect to \(z_0 = D(S_0) \), i.e., for every \(z \in \Delta_\nu(A), D_0 + (1 - t)z \in \Delta_\nu(A) \) for all \(0 \leq t \leq 1. \)

Given a permutation \(\sigma \in S_3 \), we note that \(\prod_{j=1}^3 (\gamma_j + x_{\sigma(j)}) = D(P_{\sigma}) \) where \(P_\sigma \) is the permutation matrix \((P_{ij}) \) with \(P_{i\sigma(i)} = 1, 1 \leq i \leq 3 \) and 0 elsewhere. Define the sets

\[
V_+ = \left\{ \prod_{j=1}^3 (\gamma_j + x_{\sigma(j)}): \sigma \text{ is an even permutation} \right\}
\]

and

\[
V_- = \left\{ \prod_{j=1}^3 (\gamma_j + x_{\sigma(j)}): \sigma \text{ is an odd permutation} \right\}.
\]

Since every \(S \in O_n \) is a convex combination of \(P_\sigma, \sigma \in S_3, \Delta_\nu(A) \subseteq \text{co}(V_+ \cup V_-) = P(A) \).

For any two distinct complex numbers \(x, y \), let \(L(x, y) \) denote the line on the complex plane passing \(x \) and \(y \).

With the above description of \(\Delta_\nu(A) \), the proof of the following
theorem is identical to Theorem 6 in [1]. We include it here for completeness.

Theorem 3.3 \(\Delta(A) \) is not convex if and only if there exist distinct \(x \) and \(y \) in \(V_+ \) (or in \(V_- \)) such that all points in \(V_- \) (or \(V_+ \) respectively) lie on one side (the open half plane) of \(L(x, y) \).

Proof We note that for any \(x \in V_+ \) and \(y \in V_- \), the line segment joining \(x \) and \(y \) lies in \(\Delta(A) \). Since \(\Delta(A) \) lies in \(P_c(A) \) and is star shaped, \(\Delta(A) \) is convex if and only if the boundary of \(P_c(A) \) lies in \(\Delta(A) \).

If the condition in the theorem is not satisfied, then the adjacent vertices of \(P_c(A) \) lie in \(V_+ \) and \(V_- \) alternately. Thus, \(\Delta(A) \) is convex.

Conversely, if there exist distinct points \(x = D(P_{s_1}), y = D(P_{s_2}) \) in \(V_+ \) (or in \(V_- \)) such that all points in \(V_- \) (or in \(V_+ \) respectively) lie on one side of \(L(x, y) \), then from

\[
 z_0 = \frac{1}{3} \sum_{z \in V_-} z = \frac{1}{3} \sum_{z \in V_+} z,
\]

the third point in \(V_- \) (or \(V_+ \)) also lies on this side. Thus, if \(0 < t < 1 \) and \(tx + (1-t)y \) is equal to a convex combination \(t \sigma_1 + (1-t) \sigma_2 \) of points in \(V_+ \cup V_- \), we have \(t_1 = t, (1-t) = t_2 \). Hence, if \(tx + (1-t)y \notin \Delta(A) \), then we have \(tx + (1-t)y = D(S) \) for some \(S \in 0 \). By writing \(S \) as a convex combination of \(\sigma_1, \sigma_2 \in S_3 \), we have \(S = tP_{s_1} + (1-t)P_{s_2} \). However, one can show directly [1, Theorem 5] that for any two distinct even (or odd) permutations \(\sigma_1, \sigma_2 \), \(tP_{s_1} + (1-t)P_{s_2} \) is not o.s. for all \(0 < t < 1 \). This contradiction shows that \(tx + (1-t)y \notin \Delta(A) \) for all \(0 < t < 1 \) and \(\Delta(A) \) is not convex.

Corollary 3.1 Let \(A \) be a 3 × 3 complex matrix and \(c = (\gamma_1, \gamma_2, \gamma_3) \in \mathbb{C}^3 \).

If:

(i) there exist at least two \(\sigma \)-points in \(\partial \Delta(A) \) and

(ii) for any distinct \(x \) and \(y \) in \(V_+ \) (or in \(V_- \)) all the points in \(V_- \) (or \(V_+ \) respectively) do not lie on the same half plane defined by \(L(x, y) \),

then \(\Delta(A) \) is convex and \(\Delta(A) = P_c(A) \).

Proof By property 7 of [4], the hypothesis 1 implies that \(A \) is normal. Then the previous theorem applies.
References

