ROOT SPACE DECOMPOSITION OF \(g_2 \) FROM OCTONIONS

TATHAGATA BASAK

ABSTRACT. We describe a simple way to write down explicit derivations of octonions that form a Chevalley basis of \(g_2 \). This uses the description of octonions as a twisted group algebra of the finite field \(F_8 \). Generators of \(\text{Gal}(F_8/F_2) \) act on the roots as 120-degree rotations and complex conjugation acts as negation.

1. Introduction. Let \(O \) be the unique real nonassociative eight dimensional division algebra of octonions. It is well known that the Lie algebra of derivations \(\text{Der}(O) \) is the compact real form of the Lie algebra of type \(G_2 \). Complexifying we get an identification of \(\text{Der}(O) \otimes \mathbb{C} \) with the complex simple Lie algebra \(g_2 \). The purpose of this short note is to make this identification transparent by writing down simple formulas for a set of derivations of \(O \otimes \mathbb{C} \) that form a Chevalley basis of \(g_2 \) (see Theorem 11). This gives a quick construction of \(g_2 \) acting on \(\text{Im}(O) \otimes \mathbb{C} \) because the root space decomposition is visible from the definition. The highest weight vectors of finite dimensional irreducible representations of \(g_2 \) can also be easily described in these terms.

Wilson [W] gives an elementary construction of the compact real form of \(g_2 \) with visible \(2^3 \cdot L_3(2) \) symmetry. This note started as a reworking of that paper in light of the definition of \(O \) from [B], namely, that \(O \) can be defined as the real algebra with basis \(\{ e^x : x \in F_8 \} \), with multiplication defined by

\[
e^x e^y = (-1)^{\varphi(x,y)} e^{x+y} \quad \text{where} \quad \varphi(x,y) = \text{tr}(yx^6) \tag{1}
\]

and \(\text{tr} : F_8 \to F_2 \) is the trace map: \(x \mapsto x + x^2 + x^4 \). Notice that if \(x \in F_8^* = F_8 - \{0\} \), then in the above formula \(\varphi(x,y) = \text{tr}(yx^{-1}) \).

The definition of \(O \) given above has a visible order–three symmetry \(Fr \) corresponding to the Frobenius automorphism \(x \mapsto x^2 \) generating \(\text{Gal}(F_8/F_2) \), and a visible order–seven symmetry \(M \) corresponding to multiplication by a generator of \(F_8^* \). Together they generate a group of order 21 that acts simply transitively on the natural basis \(B = \{ e^x \land e^y : x, y \in F_8^*, x \neq y \} \) of \(\land^2 \text{Im}(O) \). The only element of \(F_8^* \) fixed by \(Fr \) is 1. Let \(\{0, 1, x, y\} \subseteq F_8 \) be a subset corresponding to any line of \(P^2(F_2) \) containing 1. Let \(B_0 \subseteq B \) be the Frobenius orbit of \(e^x \land e^y \) and let \(B_0, B_1, \ldots, B_6 \) be the seven translates of \(B_0 \) by the cyclic group \(\langle M \rangle \). Then \(B \) is the disjoint union of \(B_0, \ldots, B_6 \).

Using the well known natural surjection \(D : \land^2 \text{Im}(O) \to \text{Der}(O) \) (see definition 2 below), we get a generating set \(D(B) \) of \(\text{Der}(O) \). The kernel of \(D \) has dimension seven with a basis \(\{ \sum_{i \in B_i} b_i : i = 0, \ldots, 6 \} \). The images of \(B_0, \ldots, B_6 \) span seven mutually orthogonal Cartan subalgebras transitively permuted by \(\langle M \rangle \) and forming

\textbf{Date}: July 20, 2017.

\textbf{2010 Mathematics Subject Classification}. Primary: 16W25; Secondary: 16W10, 17B25.

\textbf{Key words and phrases}. Exceptional Lie algebras, Chevalley basis, Octonions, derivations.
an orthogonal decomposition of $\text{Der}(\mathbb{O})$ in the terminology of [KT]. We fix the cartan subalgebra spanned by $D(B_0)$ because it is stable under the action of Fr. The short coroots in this Cartan are $\{ \pm D(b) : b \in B_0 \}$. At this point, it is easy to write down explicit derivations of $\mathbb{O} \otimes \mathbb{C}$ corresponding to a Chevalley basis of \mathfrak{g}_2 by simultaneously diagonalizing the action of the coroots (see the discussion preceding Theorem 11).

The following symmetry considerations make our job easy. We choose a root system for \mathfrak{g}_2 such that the automorphism Fr acts on the roots as 120–degree rotation and the complex conjugation (of $\mathbb{O} \otimes \mathbb{C}$) acts as negation. Together, these automorphisms generate a $\mathbb{Z}/6\mathbb{Z}$ that acts transitively on the short roots (and the long roots) of \mathfrak{g}_2. In our construction, the action of this $\mathbb{Z}/6\mathbb{Z}$ is a-priori visible. There are other constructions of \mathfrak{g}_2 from split octonions known in the literature (e.g., see [KT], pp. 104–106 or [EK]), but the definition in (1) and the visible $\mathbb{Z}/6\mathbb{Z}$ symmetry makes this approach cleaner and mostly computation free.

2. Definition. Let $a, b \in \mathbb{O}$. Write $\text{ad}_a(b) = [a, b] = ab - ba$. Define $D(a, b) : \mathbb{O} \to \mathbb{O}$ by

$$D(a, b) = \frac{1}{2}(\text{ad}_a + \text{ad}_b).$$

Clearly $D(a, b) = -D(b, a)$, $D(a, b)1 = 0$ and $D(1, a) = 0$. So D defines a linear map from $\wedge^2 \text{Im}(\mathbb{O})$ to $\text{End}(\mathbb{O})$ which we also denote by D. So $D(a, b) = D(a \wedge b)$.

Notation: From here on, we shall write $\mathfrak{g} = \text{Der}(\mathbb{O}) \otimes \mathbb{C}$. The Frobenius automorphism Fr acts on \mathbb{O} and hence on \mathfrak{g}. We shall see that Fr also acts on the roots and coroots of \mathfrak{g}, once we fix an appropriate Cartan subalgebra. If x is an element of any of these sets, we sometimes write x' for its image under Fr. Choose $\alpha \in \mathbb{F}_8$ such that $\alpha^3 = \alpha + 1$. Write

$$e_i = e_i^{\alpha^i} \text{ and } e_{ij} = D(e_i \wedge e_j).$$

Note that $\text{Fr} : e_i \mapsto e_{2i}$, that is, $e_i' = e_{2i}$, where the subscripts are read modulo 7.

3. Lemma. Let x and y be distinct elements of \mathbb{F}_8^* and $z \in \mathbb{F}_8$. Then

$$D(e^x \wedge e^y)e^z = \begin{cases} 2e^y & \text{if } z = x, \\ -2e^x & \text{if } z = y, \\ 0 & \text{if } z = 0 \text{ or } z = x + y, \\ -(e^xe^y)e^z & \text{otherwise.} \end{cases}$$

Proof. Let $a, b \in \mathbb{O}$. Define $R(a, b) : \mathbb{O} \to \mathbb{O}$ by $R(a, b) = [\text{ad}_a, \text{ad}_b] - \text{ad}_{[a, b]}$. One verifies that $R(a_1, a_2)(a_3) = -\sum_{\sigma \in S_3} \text{sign}(\sigma)[a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}]$ where $[a, b, c] = (ab)c - a(bc)$ is the associator. The properties of the associator in \mathbb{O} implies $R(a_1, a_2)(a_3) = -6[a_1, a_2, a_3]$. So

$$2D(a \wedge b) = \text{ad}_{[a, b]} + \frac{1}{2}R(a, b) = \text{ad}_{[a, b]} - 3[a, b, r].$$

If $z \in \mathbb{F}_2x + \mathbb{F}_2y$, then e^z belongs to the associative subalgebra spanned by e^x and e^y and the Lemma is easily verified in this case. If $z \notin \mathbb{F}_2x + \mathbb{F}_2y$, then using equation (1) one easily verifies that $

\text{ad}_{[e^x, e^y]}e^z = 2[e^x, e^y, e^z].$ The Lemma follows from this and equation (2). \qed

Let $a, b \in \mathbb{O}$. Since the subalgebra of \mathbb{O} generated by a and b is associative, the maps $\text{ad}_{[a, b]}$ and $[\text{ad}_a, \text{ad}_b]$ agree on this subalgebra. Note that the restriction of
2D(a, b) to this subalgebra is just the inner derivation ad_{a, b}. In fact the following
is well known:

4. Lemma. If a, b ∈ O, then D(a ∧ b) is a derivation of O.

By linearity it suffices to show that if x, y are distinct elements of F^2, then
D = D(e^x ∧ e^y) is a derivation of O. Write L(z, w) = D(e^z) e^w + e^z D(e^w) - D(e^z e^w).
It suffices to prove that L(z, w) = 0 for all z, w ∈ F^2. Only a few cases need to be
checked if one first proves the following Lemma.

5. Lemma. (a) Suppose u + x + y and v are distinct elements of F^2. Then D(e^v) and e^v anticommutate.
(b) Suppose u, v and x + y are three distinct elements of F^2. If L(u, v) = 0, then
L(u + v, u) = 0.

One can directly prove Lemmas 4 and 5 using Lemma 3. Since Lemma 4 is well
known (see [S]), we shall omit the details of the proof and move on to describe
the kernel of D : ∧^2 Im(O) → Der(O). Let M : F^2 → F^2 be the automorphism
M(x) = αx. Let τ = M or τ = Fr. Recall the multiplication rule of O from
equation (1). Note that ϕ(τx, τy) = ϕ(x, y). It follows that (ab)^τ = a^τ b^τ for
a, b ∈ O where τ acts on O by e^x → (e^x)^τ = e^{τx}. Since the derivations D(a ∧ b)
is defined in terms of multiplication in O, it follows that (D(a ∧ b)c)^τ = D(a^τ ∧ b^τ)c^τ
for all a, b, c ∈ O and thus, by linearity,

\[(D(w)e)^τ = D(w^τ)e^τ\] for all \(w ∈ ∧^2 \text{Im}(O), c ∈ O\).

The two dimensional subspaces of F^2 (as a F_2-vector space) correspond to lines of
P^2(F_2). So we shall call these subspaces lines. There are three lines containing 1.
Let \(\{0, 1, x, y\} ⊆ F^2\) be one of these. Define

\[Δ = e^x ∧ e^y + (e^x ∧ e^y)' + (e^x ∧ e^y)'' ∈ ∧^2 \text{Im}(O)\].

Note that the element ±Δ is independent of choice of the line and choice of the
ordered pair \((x, y)\), since the Frobenius action permutes the three lines containing
1, and interchanging \((x, y)\) changes Δ by a sign. To be specific, we choose \((x, y) =
(α, α^3)\). Then

\[Δ = e_1 ∧ e_3 + e_2 ∧ e_6 + e_4 ∧ e_5\].

6. Lemma. (a) \(\ker(D)\) has a basis given by \(Δ, Δ^M, \cdots, Δ^M^6\).

(b) One has \([e_13, e_26] = 0\).

Proof. (a) Let \(w ∈ ∧^2 \text{Im}(O)\) and \(c ∈ O\). Since \(D(w)c = 0\) implies \(D(w^M)c^M = 0\),
it suffices to show that \(D(Δ) = 0\). Lemma 3 implies that if \(\{0, 1, x, y\} ⊆ F^2\) is a
subset corresponding to a line in \(P^2(F_2)\), then \(D(e^x ∧ e^y)e_1^1 = 0\), since \(x + y = 1\).
So \(D(Δ)e_1^1 = 0\). Since \(Δ' = Δ\), the equation \(D(Δ)e_1^1 = 0\) implies \(0 = D(Δ')(e^x)' =
D(Δ)e^x\). So it suffices to show that \(D(Δ)\) kills \(e_1^1\) and \(e_3^3\). This is an easy
calculation using Lemma 3. This proves that \(Δ, Δ^M, \cdots, Δ^M^6 ∈ \ker(D)\). One
verifies that these seven elements are linearly independent.

(b) Write \(X = [e_13, e_26]\). From part (a), we know that \(e_13 + e_26 + e_{45} = 0\). It
follows that \([e_13, e_{26}] = [e_{26}, e_{45}]\), that is, \(X\) is Frobenius invariant. So it suffices
to show that \(X\) kills \(e_0, e_1, e_3\). The equation \(Xe_0 = 0\) is immediate. Verifying
\(Xe_1 = 0\) is an easy calculation using Lemma 3. The calculation for \(e_3\) is identical
to the calculation for \(e_1\) since \(e_1 = -e_3\) and \(e_26 = -e_{62}\). \(\square\)
7. Remark. We want to sketch a conceptual argument to prove \([e_{13},e_{26}] = 0\) that was pointed out to us by the referee. For \(v \in \mathbb{O}\), let \(L_v\) (resp. \(R_v\)) denote the left (resp. right) multiplication by \(v\).

Let \(x, y\) be distinct element of \(\mathbb{F}_8^*\). Let \(\mathcal{H} = \langle e^x, e^y \rangle = R e^0 + R e^x + R e^y + R e^{x+y}\) be the quaternion subalgebra of \(\mathbb{O}\) spanned by \(e^x\) and \(e^y\). Let \(\mathcal{H}^\perp\) be the orthogonal complement of \(\mathcal{H}\) with respect to the standard positive definite form on \(\mathbb{O}\). First observe that lemma 3 can be rephrased as saying that \(D(e^x \wedge e^y)\) acts as \(\text{ad}_{e^x e^y}\) on \(\mathcal{H}\) and as \(L_{e^x e^y}\) on \(\mathcal{H}^\perp\).

Write \(d_1 = e_{13}\) and \(d_2 = e_{26}\). Let \(\mathcal{H}_1 = \langle e_1, e_3 \rangle\) and \(\mathcal{H}_2 = \langle e_2, e_6 \rangle\). So \(\mathcal{H}_1\) and \(\mathcal{H}_2\) are two quaternion subalgebras of \(\mathbb{O}\) corresponding to the two lines \(l_1 = \{0, 1, \alpha, \alpha^3\}\) and \(l_2 = \{0, 1, \alpha^2, \alpha^6\}\). Since \(e_1 e_3 = e_2 e_6 = e_0\), we have

\[d_j |_{\mathcal{H}_j} = \text{ad}_{e_0}, \quad d_j |_{\mathcal{H}_j^\perp} = L_{e_0},\]

for \(j = 1, 2\). Pick a standard basis element \(e_r\) of \(\mathbb{O}\). Then \(e_r \in \mathcal{H}_1\) or \(\mathcal{H}_1^\perp\). Also \(e_r \in \mathcal{H}_2\) or \(\mathcal{H}_2^\perp\). For purpose of illustration, suppose \(e_r \in \mathcal{H}_1 \cap \mathcal{H}_1^\perp\). Then

\[(d_1 d_2 - d_2 d_1) e_r = d_1 L_{e_0} e_r - d_2 e_0 \text{ad}_{e_0} e_r = \text{ad}_{e_0} L_{e_0} e_r - L_{e_0} \text{ad}_{e_0} e_r = 0\]

where the second equality holds because \(L_{e_0}, R_{e_0}\) (and consequently \(\text{ad}_{e_0}\)) preserves \(\mathcal{H}_1\) and \(\mathcal{H}_2\) and hence preserves \(\mathcal{H}_1^\perp\) and \(\mathcal{H}_2^\perp\). If \(e_r \in \mathcal{H}_1 \cap \mathcal{H}_2\) or \(e_r \in \mathcal{H}_1^\perp \cap \mathcal{H}_2\) or \(e_r \in \mathcal{H}_1^\perp \cap \mathcal{H}_2^\perp\), the argument is identical. This proves \([d_1, d_2] = 0\). Of course this argument actually shows that if \(z \in \mathbb{F}_8^*\) and if \(\{0, z, x, y\}\) and \(\{0, z, u, v\}\) are any two lines containing \(z\), then \([D(e^x \wedge e^y), D(e^u \wedge e^v)] = 0\).

8. Definition (The roots and coroots). Lemma 6 implies that \((C e_{13} + C e_{26})\) is an abelian subalgebra of \(\mathfrak{g}\). In section 10, we shall obtain a decomposition of \(\mathfrak{g}\) as direct sum of one dimensional simultaneous eigenspaces for \(\text{ad}_{e_{13}}\) and \(\text{ad}_{e_{26}}\) and it would follow that \((C e_{13} + C e_{26})\) is a maximal abelian subalgebra or a Cartan subalgebra. We fix this Cartan subalgebra and call it \(H\). Fix a pair of coroots

\[H_{\pm \beta} = \pm H_\beta = \mp ie_{13}\]

in \(H\). Using Frobenius action, we obtain the six coroots \(\pm \{H_\beta, H'_\beta, H^2_\beta\}\) corresponding to the short roots. The six coroots corresponding to the long roots are \(\pm \{H_\gamma, H'_\gamma, H^2_\gamma\}\) where

\[H_{\pm \gamma} = \pm H_\gamma = \pm \frac{1}{3}(e_{13} - e_{26})\].

We shall define a basis of \(\mathfrak{g}\) containing \(H_\beta\) and \(H_\gamma\). The scaling factors like \(\frac{1}{3}\) are chosen to make sure that the structure constants of \(\mathfrak{g}\) with respect to this basis are integers and are smallest possible. Define roots \(\beta, \gamma\) such that

\[
\begin{pmatrix}
\beta(H_\beta) & \beta(H_\gamma) \\
\gamma(H_\beta) & \gamma(H_\gamma)
\end{pmatrix} = \begin{pmatrix}
2 & -1 \\
-3 & 2
\end{pmatrix}
\]

is the Cartan matrix of \(\mathfrak{g}_2\). So \(\{\beta, \gamma\}\) is a pair of simple roots with \(\beta\) being the short root; see Figure 1. Let \(\Phi_{\text{short}}\) be the set of six short roots and let \(\Phi\) be the set of twelve roots of \(\mathfrak{g}\). Note that the Frobenius acts on \(H\) by anti-clockwise rotation of 120–degrees and complex conjugation acts by negation.

Once the roots and coroots have been fixed, the weight space decompositions of the two smallest irreducible representations of \(\mathfrak{g}\) can be found by simultaneously diagonalizing the actions of \(H_\beta\) and \(H_\gamma\). These weight spaces are described below.
9. **The standard representation:** Write $V = \text{Im}(O) \otimes \mathbb{C}$. This is the standard representation of \mathfrak{g}. Define the vectors $v_0, v_{\pm \beta}, v_{\pm \beta}', v_{\pm \beta}''$ in V by choosing

$$v_0 = e_0 \text{ and } v_{\pm \beta} = (\pm ie_1 + e_3).$$

One easily verifies that v_0 spans the weight space V_ψ for each short root ψ. See Figure 2. One has the weight space decomposition: $V = \mathbb{C}v_0 \oplus \bigoplus_{\psi \in \Phi_{\text{short}}} \mathbb{C}v_\psi$.

10. **The adjoint representation:** If ψ is a short root of \mathfrak{g}, define

$$E_\psi = \frac{1}{2} D(v_0 \wedge v_\psi).$$

If ν is a long root of \mathfrak{g}, then there exists a unique short root ψ such that $\nu = \psi - \psi'$. Define

$$E_\nu = \frac{1}{6} D(v_\psi \wedge v_\psi').$$

One easily verifies that E_ρ spans the root space \mathfrak{g}_ρ for each root $\rho \in \Phi$. One has the root space decomposition: $\mathfrak{g} = H \oplus \bigoplus_{\rho \in \Phi} \mathbb{C}E_\rho$. Note that

$$E_\beta = \frac{1}{8} D(v_0 \wedge v_\beta) = \frac{1}{4} D(e_0 \wedge (ie_1 + e_3)) = \frac{1}{2}(-ie_{10} + e_{03}),$$

and

$$E_\gamma = \frac{1}{6} D(v_{-\beta} \wedge v_\beta') = \frac{1}{6} D((-ie_1 + e_3) \wedge (ie_2 + e_6)) = \frac{1}{6}(e_{12} + e_{36} - i(e_{23} + e_{16})).$$

To write down the other E_ρ’s, apply the $\mathbb{Z}/6\mathbb{Z}$ symmetry generated by complex conjugation and Frobenius.

11. **Theorem.** The set $\{H_\beta, H_\gamma\} \cup \{E_\rho; \rho \in \Phi\}$ is a Chevalley basis of \mathfrak{g}.

 Remark on proof. Checking that these generators of \mathfrak{g} obey the commutation rules dictated by the root space decomposition is a routine verification using their action on the standard representation V as described in remark 13. Because of the visible $\mathbb{Z}/6\mathbb{Z}$ symmetry of our construction, only few cases need to be checked. □

12. **Remark.** Identify $(\wedge^2 \text{Im}(O) \otimes \mathbb{C})$ with $\mathfrak{so}_7(\mathbb{C})$ in the standard manner (see [FH], page 303) so that $e_i \wedge e_j$ gets identified with the skew symmetric matrix $2(E_{ij} - E_{ji})$ where E_{ij} is the matrix with rows and columns indexed by $\mathbb{Z}/7\mathbb{Z}$ whose only nonzero entry is 1 in the (i, j)-th slot. Let ν be a long root. Write $\nu = \psi - \psi'$ for a short root ψ. It is curious to note that

$$[D(v_0 \wedge v_\psi), D(v_0 \wedge v_{-\psi'})]_\mathfrak{g} = 4[E_\psi, E_{-\psi'}]_\mathfrak{g} = 12E_\nu = -D[v_0 \wedge v_\psi, v_0 \wedge v_{-\psi'}]_{\mathfrak{so}_7(\mathbb{C})},$$

even though $-D$ is not a Lie algebra homomorphism.
Figure 2. Basis for weight spaces in the standard representation \(\text{Im}(\mathfrak{g}) \otimes \mathbb{C} \). The numbers next to the dashed arrows indicate the scalars involved in action of some of the \(E_\psi \)'s as stated in equation (3). The rest can be worked out from weight consideration and \(\mathbb{Z}/6\mathbb{Z} \) symmetry.

13. Remark (Action of the Chevalley basis on the standard representation). The action of the vectors \(\{ E_\rho : \rho \in \Phi \} \) on the weight vectors \(\{ v_0 \} \cup \{ v_\psi : \psi \in \Phi_{\text{short}} \} \) is determined up to scalars by weight consideration since \([\mathfrak{g}_\rho, V_\rho] \subseteq V_{\rho+\rho'} \) and each weight space \(V_\rho \) is at most one dimensional. The non-trivial scalars are determined by the following rules: Let \(\psi \) be a short root and let \(\rho \) be a root such that \(\psi + \rho \) is also a short root. Then

\[
E_\psi v_0 = v_\psi, \quad E_\psi v_{-\psi} = -2v_0, \quad \text{and} \quad E_\rho v_\psi = \epsilon v_{\rho+\psi}
\]

where \(\epsilon = 1 \) if \(v_{\rho+\psi} \) is equal to \(v_\rho' \) or \(-v_\rho'' \) and \(\epsilon = -1 \) otherwise. In other words, \(\epsilon = 1 \) if and only if the movement from \(\psi \) to \((\rho + \psi) \) in the direction of \(\rho \) defines an anti-clockwise rotation of angle less than \(\pi \) around the origin. The relations in equation (3) are easily verified using Lemma 3. Only a few relations need to be checked, because of the \(\mathbb{Z}/6\mathbb{Z} \) symmetry. The nontrivial scalars involved in this action are indicated in Figure 2 next to the dashed arrows. For example, the \(-2\) next to the horizontal arrow means that \(E_\beta v_{-\beta} = -2v_0 \).

14. The irreducible representations of \(\mathfrak{g}_2 \): We finish by describing the finite dimensional irreducible representations of \(\mathfrak{g} \) in terms of the standard representation \(V \). This was worked out in [HZ]. The description given below follows quickly from the results of [HZ].

Fix the simple roots \(\{ \beta, \gamma \} \) as in Figure 1. Then the fundamental weights of \(\mathfrak{g} \) are \(\mu_1 = -\beta'' \) and \(\mu_2 = -\gamma' \). For each non-negative integer \(a, b \), let \(\Gamma_{a,b} \) denote the finite dimensional irreducible representation of \(\mathfrak{g} \) with highest weight \((a\mu_1 + b\mu_2) \). The two smallest ones are the standard representation \(V = \Gamma_{1,0} \) and the adjoint representation \(\mathfrak{g} = \Gamma_{0,1} \).

Let \(\lambda \) be the Young tableau having two rows, corresponding to the partition \((a+b,b)\). Then \(\Gamma_{a,b} \) can be realized as a subspace of the Weyl module \(S_\lambda(V) \); see [HZ], Theorem 5.5. From [F], chapter 8, recall that the vectors in \(S_\lambda(V) \) can be represented in the form

\[
w = \frac{w_{1,1}}{w_{2,1}} \frac{w_{1,2}}{w_{2,2}} \cdots \frac{w_{1,b}}{w_{2,b}}
\]

where \(w_{i,j} \in V \), modulo the following relations:
Interchanging the two entries of a column negates the vector w.

Interchanging two columns of the same length does not change w.

For each $1 \leq j \leq b$ and $j < k \leq a + b$, let z_1 (resp. z_2) be the vector obtained from w by interchanging $w_{1,k}$ with $w_{1,j}$ (resp. $w_{2,j}$). Then $w = z_1 + z_2$.

These relations are the exchange conditions of [F], page 81, worked out in our situation.

The natural surjection from $\otimes^{a+b} V \to S_\lambda(V)$ induces the g–action on $S_\lambda(V)$. Note that the highest weight of $\Gamma_{a,b}$ is $(a\mu_1 + b\mu_2) = (a + b)(-\beta'') + b\beta'$. From Figure 2, recall that $v''_{\beta} = -ie_4 + e_5$ and $v'_{\beta} = ie_2 + e_6$. Let $w_\lambda \in S_\lambda(V)$ be the vector written in the form given in equation (4) whose first row entries are all equal to $(-ie_4 + e_5)$ and whose second row entries are all equal to $(ie_2 + e_6)$. Then we find that w_λ has weight $(a\mu_1 + b\mu_2)$. So $\Gamma_{a,b} = U(g)w_\lambda$, and w_λ is the highest weight vector of $\Gamma_{a,b}$.

Acknowledgement: I would like to thank Jonathan Smith and Jonas Hartwig for many interesting discussions and helpful suggestions. I am grateful to the referee for suggesting many improvements and correcting several mistakes. In particular, the conceptual argument for Lemma 6(b) sketched in remark 7 is due to him.

References

Department of Mathematics, Iowa State University, Ames, IA 50011

E-mail address: tathagat@iastate.edu

URL: http://orion.math.iastate.edu/tathagat