Math 265 HW 1 Due Tuesday 9-17

1) A curve is described by the equations \(x = 6t^2 + 2, \ y = 2t, \ z = t^2 - t; \ (-\infty < t < \infty). \)
 a) Find parametric equations for the line that is tangent to the curve when \(t = 2. \)
 b) Find the symmetric form of the equations for the line.

2) Find the length of the curve \(x = \cos t + t \sin t, \ y = \sin t - t \cos t \) from 0 to \(2\pi. \)

3) Let \(\mathbf{a} = \langle 7, 0 \rangle \) and \(\mathbf{b} = \langle 5, 1 \rangle. \)
 a) Find the cosine of the angle between \(\mathbf{a} \) and \(\mathbf{b}. \)
 b) Find the projection of \(\mathbf{a} \) on \(\mathbf{b}. \)

4) Find a vector of length 3 that is parallel to a line of slope -2.

5) Let \(\mathbf{r}(t) = 2t^2 \mathbf{i} + (4t + 2) \mathbf{j}. \)
 a) Find the velocity vector \(\mathbf{v} \) when \(t = 1 \)
 b) Find the speed when \(t = 1 \)
 c) Find the acceleration vector \(\mathbf{a} \) when \(t = 1. \)
 d) Find a unit tangent vector \(\mathbf{T} \) to the curve when \(t = 1. \)
 e) Find the curvature when \(t = 1 \)

6) Find the vector from the point (1,2) to the midpoint between (2,3) and (5,1). Draw a diagram indicating all relevant vectors.