In 1-4 circle the best answer. Each problem is worth 5 points.

1. The function \(f(x) = \frac{5 - x}{2 - x} \) has a horizontal asymptote at
 a) \(y = 1 \)
 b) \(y = 5 \)
 c) \(y = 2 \)
 d) \(y = 5/2 \)
 e) no horizontal asymptotes

2. How many points on the graph of \(f(x) = x^3 - 10x + 2 \) have a horizontal tangent line?
 a) 0
 b) 1
 c) 2
 d) 3
 e) infinitely many

3. If \(y = e^{x^2} \) then
 a) \(\frac{dy}{dx} = e^{2x} \)
 b) \(\frac{dy}{dx} = x^2 e^{x^2 - 1} \)
 c) \(\frac{dy}{dx} = ye^{-2x} \)
 d) \(\frac{dy}{dx} = 2xe^{2x} \)
 e) \(\frac{dy}{dx} = 2xe^{-x^2} \)

4. If \(f(x) = x \ln(x) \) then \(f'(x) = \)
 a) \(\frac{1}{x} \)
 b) \(x \ln(1) + \ln(x) \)
 c) \(1 + \frac{1}{x} \)
 d) \(1 + \ln(x) \)
 e) \(x \ln(1) \)

Questions 5-8 refer to the function \(f \) whose graph is given below. Simply answer the question, no explanation is required.

5. Give the intervals on which \(f' \) appears to be negative
 \((x_2, x_3), (x_3, 0)\)

6. List all points (x- coordinates) where \(f \) fails to be continuous
 \(x_3\)

7. List all points (x- coordinates) where \(f \) fails to have a derivative
 \(x_3, 0\)

8. List all intervals on which \(f'' \) appears to be positive
 \((x_4, x_5)\)

(See actual test, or graphs link for graph of function \(f \).)
9. (20pt) Let \(f(x) = 5x^{4/5} - 2x \).
 (a) Find all critical numbers. (These are values of \(x \) where \(f' \) is either zero or does not exist.)
 Solution: \(f' = 4x^{-1/5} - 2 \). There is a divide by zero at 0 so \(f' \) has a vertical tangent there. Thus \(x = 0 \) is one critical number. Setting \(f' = 0 \) gives
 \[
 4x^{-1/5} - 2 = 0
 \]
 \[
 x^{-1/5} = 1/2
 \]
 \[
 x = 32 \text{ (raise both sides of previous line to -5 power)}
 \]
 Thus 0, 32 are the critical numbers.

 (b) Find the absolute maximum and absolute minimum value of \(f \) on the interval \([-1, 32]\).
 Solution: We need to check the endpoints and the critical numbers: \(f(-1) = 5 + 2 = 7 \), \(f(0) = 0 \), \(f(32) = 80 - 64 = 16 \). Thus the absolute max of \(f \) is 16 and the absolute min is 0.

10. (10pt) Suppose \(x \) and \(y \) are differentiable functions of \(t \) and \(x^2 - y^2 = 5 \). Find \(\frac{dy}{dt} \) when \(x = 4 \), \(y = 3 \) and \(\frac{dx}{dt} = 2 \).
 Solution:
 \[
 2x \frac{dx}{dt} - 2y \frac{dy}{dt} = 0
 \]
 Now plug in known values:
 \[
 8 \cdot 2 - 6 \frac{dy}{dt} = 0
 \]
 \[
 \frac{dy}{dt} = 16/6 = 8/3
 \]
11. Let f be a function with the following properties:

(i) $f(-2) = f(0) = 0$ and otherwise f is nonzero

(ii) $f'(-1) = f'(1) = 0$ and otherwise f' is nonzero

(iii) f'' is negative for $x < 0$, positive for $0 < x < 2$ and negative for $x > 2$.

(a) (10pt) Use the second derivative test to locate the x coordinates of any local maxima and minima

Solution: Since $f'(1) = 0$, $f''(1) > 0$ f has a local min at $x = 1$. Since $f'(-1) = 0$, $f''(-1) < 0$ f has a local max at $x = -1$.

(b) (10pt) Sketch the graph of a function f that satisfies conditions (i)-(iii).

Solution: Before trying to draw it, it helps to figure out where f is increasing and decreasing. From part (a) f has a local max at $x = -1$ so for the first derivative test to work, f' needs to be positive for $x < -1$. Since $x = 1$ is local min, we need $f' < 0$ on $(-1, 1)$ and $f' > 0$ on $(1, \infty)$. It also helps to keep in mind that f can not cross the x-axis if $x > 0$ by rule (i).

See graphs link for a sketch.

12. (10pt) A farmer has 80 feet of fence and wants to make a rectangular pen for some animals. A long barn can serve as one side of the pen and the fence serves as the other 3 sides. What dimensions of the pen (length of sides) maximize the area of the pen? (Hint: let x, y be sides of the rectangle. What adds up to 80? What is to be maximized? Draw a picture.)

Solution: The fence will have 3 sides (the barn is the fourth side). So let x be the length of the adjacent sides, and y the length of the opposite side. The total length of fence is then $2x + y$ which must add up to 80 ft. Thus

$$2x + y = 80, \quad \text{or } y = 80 - 2x$$

The are inside the fence is xy square ft. Using the above eq. for y,

$$A = xy = x(80 - 2x) = 80x - 2x^2$$

To maximize area, we take the derivative and set it to 0:

$$A' = 80 - 4x = 0$$

We obtain $x = 20$ and thus $y = 40$.