Tiling on multipartite graphs

Ryan Martin

Mathematics Department
Iowa State University
rymartin@iastate.edu

Texas State Discrete Math Seminar
1 Hajnal-Szemerédi
2 Multipartite graphs
3 Extremal examples
4 Multipartite factors
5 Approximate bounds
6 Critical chromatic number
7 Open problems

This talk includes joint work with:

- Csaba Magyar
- Endre Szemerédi, Rutgers University and the Rényi Institute
- Yi Zhao, Georgia State University
The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If \(G \) is a simple graph on \(n \) vertices with minimum degree

\[
\delta(G) \geq \left(1 - \frac{1}{r}\right)n
\]

then \(G \) contains a subgraph which consists of \(\lfloor n/r \rfloor \) vertex-disjoint copies of \(K_r \).
The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \geq \left(1 - \frac{1}{r}\right)n$$

then G contains a subgraph which consists of $\lfloor n/r \rfloor$ vertex-disjoint copies of K_r.

This is a K_r-tiling.
The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \geq \left(1 - \frac{1}{r}\right) n$$

then G contains a subgraph which consists of $\lfloor n/r \rfloor$ vertex-disjoint copies of K_r.

This is a K_r-tiling or a K_r-factor.
The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \geq \left(1 - \frac{1}{r}\right)n$$

then G contains a **subgraph which consists of** $\left\lfloor \frac{n}{r} \right\rfloor$ **vertex-disjoint copies** of K_r.

This is a K_r-tiling or a K_r-factor or even a K_r-packing.
The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \geq \left(1 - \frac{1}{r}\right) n$$

then G contains a subgraph which consists of $\lfloor n/r \rfloor$ vertex-disjoint copies of K_r.

This is a K_r-tiling or a K_r-factor or even a K_r-packing. We will use “factor” most often.
The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \geq \left(1 - \frac{1}{r}\right)n$$

then G contains a subgraph which consists of $\left\lfloor \frac{n}{r} \right\rfloor$ vertex-disjoint copies of K_r.

This is a K_r-tiling or a K_r-factor or even a K_r-packing. We will use “factor” most often.

Notes

- $r = 2$ follows from Dirac
The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If \(G \) is a simple graph on \(n \) vertices with minimum degree

\[
\delta(G) \geq \left(1 - \frac{1}{r}\right)n
\]

then \(G \) contains a subgraph which consists of \(\lfloor n/r \rfloor \) vertex-disjoint copies of \(K_r \).

This is a \(K_r \)-tiling or a \(K_r \)-factor or even a \(K_r \)-packing. We will use “factor” most often.

Notes

- \(r = 2 \) follows from Dirac
- \(r = 3 \) proven by Corrádi & Hajnal 1963
The Hajnal-Szemerédi theorem

Theorem (Hajnal-Szemerédi, 1970)

(Complementary form) If G is a simple graph on n vertices with minimum degree

$$\delta(G) \geq \left(1 - \frac{1}{r}\right)n$$

then G contains a subgraph which consists of $\left\lfloor \frac{n}{r} \right\rfloor$ vertex-disjoint copies of K_r.

This is a K_r-tiling or a K_r-factor or even a K_r-packing. We will use “factor” most often.

Notes

- $r = 2$ follows from Dirac
- $r = 3$ proven by Corrádi & Hajnal 1963
- New proof by Kierstead & Kostochka 2008 (discharging)
The Alon-Yuster theorem

Theorem (Alon-Yuster, 1992)

For any $\alpha > 0$ and graph H, there exists an $n_0 = n_0(\alpha, H)$ such that in any graph G on $n \geq n_0$ vertices with

$$\delta(G) \geq \left(1 - \frac{1}{\chi(H)} + \alpha\right) n$$

there is an H-factor of G if $|V(H)|$ divides n.

Komlós, Sárközy and Szemerédi, 2001, showed that n can be replaced by $C = C(H)$, but not eliminated entirely.
The Alon-Yuster theorem

Theorem (Alon-Yuster, 1992)

For any $\alpha > 0$ and graph H, there exists an $n_0 = n_0(\alpha, H)$ such that in any graph G on $n \geq n_0$ vertices with

$$\delta(G) \geq \left(1 - \frac{1}{\chi(H)} + \alpha\right) n$$

there is an H-factor of G if $|V(H)|$ divides n.

Komlós, Sárközy and Szemerédi, 2001, showed that αn can be replaced by $C = C(H)$, but not eliminated entirely.
Multipartite graphs

Definition

The family of r-partite graphs with N vertices in each part is denoted $G_r(N)$. Note that $G \in G_r(N) \Rightarrow |V(G)| = rN$.

Definition

The natural bipartite subgraphs of G are the ones induced by the pairs of classes of the r-partition.
Multipartite graphs

Definition

The family of r-partite graphs with N vertices in each part is denoted $\mathcal{G}_r(N)$.

Note that $G \in \mathcal{G}_r(N) \iff |V(G)| = rN$.
Multipartite graphs

Definition

The family of r-partite graphs with N vertices in each part is denoted $G_r(N)$.

Note that $G \in G_r(N) \iff |V(G)| = rN$.

Definition

The natural bipartite subgraphs of G are the ones induced by the pairs of classes of the r-partition.
Example Consider the graph G:
Natural bipartite subgraphs

Example Consider the graph G:

The natural bipartite subgraphs:
Minimum degree condition

Definition

If $G \in \mathcal{G}_r(N)$, let $\bar{\delta}(G)$ denote the minimum degree among all of the natural bipartite subgraphs of G.

Conjecture [Fischer]

If $G \in \mathcal{G}_r(N)$ and $\bar{\delta}(G) \geq 1 - \frac{1}{r}N$ then G has a K_r-factor.
Minimum degree condition

Definition

If $G \in \mathcal{G}_r(N)$, let $\bar{\delta}(G)$ denote the minimum degree among all of the natural bipartite subgraphs of G.

I.e., each vertex $v \in V_1$ has at least $\bar{\delta}(G)$ neighbors in each of V_2, V_3, \ldots, V_r.
Minimum degree condition

Definition

If $G \in \mathcal{G}_r(N)$, let $\bar{\delta}(G)$ denote the minimum degree among all of the natural bipartite subgraphs of G.

I.e., each vertex $v \in V_1$ has at least $\bar{\delta}(G)$ neighbors in each of V_2, V_3, \ldots, V_r.

Conjecture [Fischer]

If $G \in \mathcal{G}_r(N)$ and

$$\bar{\delta}(G) \geq \left(1 - \frac{1}{r}\right) N$$

then G has a K_r-factor.
Observation

This does not follow from Hajnal Szemerédi.
Not a corollary

Observation
This does not follow from Hajnal Szemerédi.

Let $G \in \mathcal{G}_r(N)$ and $\overline{\delta}(G) \geq (1 - \frac{1}{r})N$. Then,
Not a corollary

Observation

This does not follow from Hajnal Szemerédi.

Let $G \in G_r(N)$ and $\bar{\delta}(G) \geq (1 - \frac{1}{r}) N$. Then,

$$\delta(G) \geq (r - 1) \left(1 - \frac{1}{r}\right) N$$
Not a corollary

Observation
This does not follow from Hajnal Szemerédi.

Let $G \in G_r(N)$ and $\bar{\delta}(G) \geq \left(1 - \frac{1}{r}\right) N$. Then,

\[
\delta(G) \geq (r - 1) \left(1 - \frac{1}{r}\right) N
\]

\[
= \left(\frac{r-1}{r}\right)^2 (rN)
\]
Observation

This does not follow from Hajnal Szemerédi.

Let \(G \in \mathcal{G}_r(N) \) and \(\bar{\delta}(G) \geq (1 - \frac{1}{r}) N \). Then,

\[
\delta(G) \geq (r - 1) \left(1 - \frac{1}{r}\right) N
\]

\[
= \left(\frac{r-1}{r}\right)^2 (rN)
\]

\[
= \left(1 - \frac{2r-1}{r^2}\right) |V(G)|
\]

So the total degree is not large enough to invoke Hajnal-Szemerédi.
Not a corollary

Observation

This does not follow from Hajnal Szemerédi.

Let $G \in \mathcal{G}_r(N)$ and $\overline{\delta}(G) \geq (1 - \frac{1}{r}) N$. Then,

$$\delta(G) \geq (r - 1) \left(1 - \frac{1}{r}\right) N$$

$$= \left(\frac{r-1}{r}\right)^2 (rN)$$

$$= \left(1 - \frac{2r-1}{r^2}\right) |V(G)|$$

$$< \left(1 - \frac{1}{r}\right) |V(G)|, \text{ if } r \geq 2.$$

So the total degree is not large enough to invoke Hajnal-Szemerédi.
Conjecture is false
Conjecture is false

...but only slightly false.
Conjecture is false

...but only slightly false.

The bound $\delta(G) \geq (1 - \frac{1}{r}) N$ is not sufficient for (r, N) such that r is odd, and N is an odd multiple of r.

Example

Let $r = 3$ and $N = 3$:
Conjecture is false

...but only slightly false.

The bound $\bar{\delta}(G) \geq (1 - \frac{1}{r}) N$ is not sufficient for (r, N) such that

1. r is odd, and
Conjecture is false

...but only slightly false.

The bound \(\overline{\delta}(G) \geq (1 - \frac{1}{r}) N \) is not sufficient for \((r, N)\) such that

- \(r\) is odd, and
- \(N\) is an odd multiple of \(r\).
Conjecture is false

...but only slightly false.

The bound $\bar{\delta}(G) \geq (1 - \frac{1}{r}) N$ is not sufficient for (r, N) such that

- r is odd, and
- N is an odd multiple of r.

Example Let $r = 3$ and $N = 3$:
General Example

Redraw the example with nonedges:

\[\Gamma_3(3) \]
Redraw the example with nonedges:

This complement can be attributed to Paul Catlin, 1976, and was called a “type 2 graph.”
For any N, with $r \mid N$, we can "blow up" this graph by N/r:

- Replace each vertex with N/r vertices.
- Replace each edge with $K_{N/r}$, N/r.
Blowing up

For any N, with $r | N$, we can ”blow up” this graph by N/r:

- Replace each vertex with N/r vertices.
Blowing up

For any N, with $r \mid N$, we can ”blow up” this graph by N/r:

- Replace each vertex with N/r vertices.
- Replace each edge with $K_{N/r,N/r}$.
Blowing up

For any N, with $r | N$, we can ”blow up” this graph by N/r:

- Replace each vertex with N/r vertices.
- Replace each edge with $K_{N/r,N/r}$.

Then, $\Gamma_r(N) \in \mathcal{G}_r(N)$.
Blowing up

For any \(N \), with \(r \mid N \), we can ”blow up” this graph by \(N/r \):

- Replace each vertex with \(N/r \) vertices.
- Replace each edge with \(K_{N/r,N/r} \).

Then, \(\Gamma_r(N) \in \mathcal{G}_r(N) \).

If \(r \mid N \), then \(\Gamma_r(N/r) \) has no \(K_r \)-factor iff \(r \) is odd and \(N/r \) is odd.
Theorem (Magyar-M, 2002)

There exists an N_0 such that if $N \geq N_0$, $G \in \mathcal{G}_3(N)$ and

$$\bar{\delta}(G) \geq \frac{2}{3}N,$$

then G has a K_3-factor unless

$G \approx \Gamma_3(N)$ and $N/3$ is an odd integer.
Theorem (Magyar-M, 2002)

There exists an N_0 such that if $N \geq N_0$, $G \in \mathcal{G}_3(N)$ and

$$\bar{\delta}(G) \geq \frac{2}{3}N,$$

then G has a K_3-factor unless

$G \approx \Gamma_3(N)$ and $N/3$ is an odd integer.

(N need not be divisible by 3.)
Quadripartite theorem

Theorem (M-Szemerédi, 2008)

There exists an N_0 such that if $N \geq N_0$, $G \in G_4(N)$ and

$$\bar{\delta}(G) \geq \frac{3}{4} N,$$

then G has a K_4-factor.
Quadripartite theorem

Theorem (M-Szemerédi, 2008)

There exists an N_0 such that if $N \geq N_0$, $G \in \mathcal{G}_4(N)$ and

$$\bar{\delta}(G) \geq \frac{3}{4}N,$$

then G has a K_4-factor.

There is no exceptional graph.
Bipartite graph factors

Theorem (Zhao, 2009)

Let \(h \) be a positive integer. There exists an \(N_0 = N_0(h) \) such that if \(N \geq N_0, \ h \mid N, \) and \(G \in \mathcal{G}_2(N) \) with

\[
\bar{\delta}(G) \geq \begin{cases}
\frac{N}{2} + h - 1, & N/h \text{ is odd;} \\
\frac{N}{2} + \frac{3h}{2} - 2, & N/h \text{ is even,}
\end{cases}
\]

then \(G \) has a \(K_{h,h} \)-factor.
Bipartite graph factors

Theorem (Zhao, 2009)

Let h be a positive integer. There exists an $N_0 = N_0(h)$ such that if $N \geq N_0$, $h \mid N$, and $G \in \mathcal{G}_2(N)$ with

$$\bar{\delta}(G) = \tilde{\delta}(G) \geq \begin{cases} \frac{N}{2} + h - 1, & N/h \text{ is odd;} \\ \frac{N}{2} + \frac{3h}{2} - 2, & N/h \text{ is even,} \end{cases}$$

then G has a $K_{h,h}$-factor.

Moreover, there are examples that prove that this $\bar{\delta}$ condition cannot be improved.
Two-colorable graph factors

Note

If $\chi(H) = 2$ and $|V(H)| = h$, then $K_{h,h}$-factor \Rightarrow H-factor.
Two-colorable graph factors

Note

If $\chi(H) = 2$ and $|V(H)| = h$, then $K_{h,h}$-factor $\Rightarrow H$-factor.

Example.
Tripartite graph factors

Theorem (M-Zhao, 2009+)

Let h be a positive integer and $f(h)$ be the minimum integer such that:

1. $\exists N_0 = N_0(h)$ for which $N \geq N_0$, $h \mid N$, $G \in G_3(N)$, $\bar{\ell}(G) \geq h^2 N^3 h + f(h)$ implies G has a $K_{h,h,h}$-factor.

2. $f(h) = h - 1$, if $N/h \equiv 0 \mod 6$;
 $h - 2 \leq f(h) \leq h - 1$, if $N/h \not\equiv 0 \mod 3$;
 $h - 1 \leq f(h) \leq 2h - 1$, if $N/h \equiv 3 \mod 6$.

Note: Both $(H) = 3$ and $|V(H)| = h$ together imply a H-factor also.
Tripartite graph factors

Theorem (M-Zhao, 2009+)

Let h be a positive integer and $f(h)$ be the minimum integer such that:

- $\exists N_0 = N_0(h)$ for which $N \geq N_0$, $h \mid N$, $G \in G_3(N)$,

Then

- $f(h) = h - 1$, if $N / h \equiv 0 \mod 6$;
- $h - 2 \leq f(h) \leq h - 1$, if $N / h \not\equiv 0 \mod 3$;
- $h - 1 \leq f(h) \leq 2h - 1$, if $N / h \equiv 3 \mod 6$.

Note: Both $(H) = 3$ and $\mid V(H) \mid = h$ together imply a H-factor also.
Theorem (M-Zhao, 2009+)

Let h be a positive integer and $f(h)$ be the minimum integer such that:

1. $\exists N_0 = N_0(h)$ for which $N \geq N_0$, $h \mid N$, $G \in \mathcal{G}_3(N)$,
2. $\bar{\delta}(G) \geq h \left\lceil \frac{2N}{3h} \right\rceil + f(h)$

implies G has a $K_{h,h,h}$-factor.

Note: Both $(H) = 3$ and $|V(H)| = h$ together imply a H-factor also.
Theorem (M-Zhao, 2009+)

Let h be a positive integer and $f(h)$ be the minimum integer such that:

- $\exists N_0 = N_0(h)$ for which $N \geq N_0$, $h \mid N$, $G \in \mathcal{G}_3(N)$,
- $\bar{\delta}(G) \geq h \left\lceil \frac{2N}{3h} \right\rceil + f(h)$

implies G has a $K_{h,h,h}$-factor. Then

$$f(h) = h - 1, \quad \text{if } N/h \equiv 0 \text{ mod } 6;$$
$$h - 2 \leq f(h) \leq h - 1, \quad \text{if } N/h \not\equiv 0 \text{ mod } 3;$$
$$h - 1 \leq f(h) \leq 2h - 1, \quad \text{if } N/h \equiv 3 \text{ mod } 6.$$
Theorem (M-Zhao, 2009+)

Let h be a positive integer and $f(h)$ be the minimum integer such that:

- $\exists N_0 = N_0(h)$ for which $N \geq N_0$, $h \mid N$, $G \in G_3(N)$,
- $\delta(G) \geq h \left\lceil \frac{2N}{3h} \right\rceil + f(h)$

implies G has a $K_{h,h,h}$-factor. Then

$f(h) = h - 1$, if $N/h \equiv 0 \mod 6$;
$h - 2 \leq f(h) \leq h - 1$, if $N/h \not\equiv 0 \mod 3$;
$h - 1 \leq f(h) \leq 2h - 1$, if $N/h \equiv 3 \mod 6$.

Note

Both $\chi(H) = 3$ and $|V(H)| = h$ together imply a H-factor also.
Other graph factors

The case analysis required to prove that $\bar{\delta}(G) \geq (3/4 + \epsilon)N$ is sufficient for a $K_{h,h,h,h}$-factor would be long and difficult, using current methods. However, we believe it could be done.
Other graph factors

The case analysis required to prove that $\bar{\delta}(G) \geq (3/4 + \epsilon)N$ is sufficient for a $K_{h,h,h,h}$-factor would be long and difficult, using current methods. However, we believe it could be done.

To prove the existence of an $f(h)$ would be even more difficult.
No version of the following key lemma for $r \geq 5$:

Almost-covering lemma ($r = 3$)

For every $\Delta > 0$, there exists an $\varepsilon > 0$ such that if $G \in G_3(N)$, $\overline{\Gamma}(G) \geq 2 - 3N$ and T_0 is a partial K_3-factor of G with $|T_0| < N - 3$, then either

1. \exists a partial K_3-factor T' with $|T'| > |T_0|$ and $|T' \setminus T_0| \leq 15$ or
2. \exists 3 sets which are each of size $N/3$ but have pairwise density $\leq \Delta$.

Ryan Martin (Iowa State U.)
No version of the following key lemma for $r \geq 5$:

Almost-covering lemma ($r = 3$)

For every $\Delta > 0$, there exists an $\epsilon > 0$ such that if $G \in \mathcal{G}_3(N)$,

$$\bar{\delta}(G) \geq \left(\frac{2}{3} - \epsilon\right)N$$

and T_0 is a partial K_3-factor of G with $|T_0| < N - 3$, then either
Other graph factors

No version of the following key lemma for $r \geq 5$:

Almost-covering lemma ($r = 3$)

For every $\Delta > 0$, there exists an $\epsilon > 0$ such that if $G \in \mathcal{G}_3(N)$,

$$\overline{\delta}(G) \geq \left(\frac{2}{3} - \epsilon\right) N$$

and T_0 is a partial K_3-factor of G with $|T_0| < N - 3$, then either

- \exists a partial K_3-factor T' with $|T'| > |T_0|$ and $|T' \setminus T_0| \leq 15$ or
Other graph factors

No version of the following key lemma for $r \geq 5$:

Almost-covering lemma ($r = 3$)

For every $\Delta > 0$, there exists an $\epsilon > 0$ such that if $G \in \mathcal{G}_3(N)$,

$$\bar{\delta}(G) \geq \left(\frac{2}{3} - \epsilon \right) N$$

and T_0 is a partial K_3-factor of G with $|T_0| < N - 3$, then either
- \exists a partial K_3-factor T' with $|T'| > |T_0|$ and $|T' \setminus T_0| \leq 15$ or
- \exists 3 sets which are each of size $N/3$ but have pairwise density $\leq \Delta$.
Best general bound

Theorem (Csaba-Mydlarz, 2009+)

Let \(r \geq 5 \) and \(\epsilon > 0 \). There exists an \(N_0 = N_0(r, \epsilon) \) such that if \(N \geq N_0 \), \(G \in \mathcal{G}_r(N) \) and if

\[
\tilde{\delta}(G) \geq \left(\frac{k}{k + 1} + \epsilon \right) N, \quad k = r + \lceil 4h_r \rceil,
\]

then \(G \) has a \(K_r \)-factor.
Best general bound

Theorem (Csaba-Mydlarz, 2009+)

Let $r \geq 5$ and $\epsilon > 0$. There exists an $N_0 = N_0(r, \epsilon)$ such that if $N \geq N_0$, $G \in \mathcal{G}_r(N)$ and if

$$\bar{\delta}(G) \geq \left(\frac{k}{k+1} + \epsilon \right) N, \quad k = r + \lceil 4h_r \rceil,$$

then G has a K_r-factor.

$$h_r = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{r}$$
Best general bound

Theorem (Csaba-Mydlarz, 2009+)

Let \(r \geq 5 \) and \(\epsilon > 0 \). There exists an \(N_0 = N_0(r, \epsilon) \) such that if \(N \geq N_0 \), \(G \in \mathcal{G}_r(N) \) and if

\[
\overline{\delta}(G) \geq \left(\frac{k}{k+1} + \epsilon \right) N, \quad k = r + \lceil 4h_r \rceil,
\]

then \(G \) has a \(K_r \)-factor.

\[
h_r = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{r}
\]

This is the best bound for \(r \geq 5 \).
Critical chromatic number

Definition

Let H be a graph with

- order: $h = |V(H)|$
Critical chromatic number

Definition

Let H be a graph with

- order: $h = |V(H)|$
- chromatic number: $\chi = \chi(H)$
Critical chromatic number

Definition

Let H be a graph with

- order: $h = |V(H)|$
- chromatic number: $\chi = \chi(H)$
- σ is the size of the smallest color class of H among all proper χ-colorings of $V(H)$.

Critical chromatic number

Definition

Let H be a graph with

- order: $h = |V(H)|$
- chromatic number: $\chi = \chi(H)$
- σ is the size of the smallest color class of H among all proper χ-colorings of $V(H)$.

The **critical chromatic number of** H, $\chi_{cr}(H)$ is

$$
\chi_{cr}(H) = \frac{(\chi - 1)h}{h - \sigma}.
$$
Critical chromatic number

Definition

Let H be a graph with

- order: $h = |V(H)|$
- chromatic number: $\chi = \chi(H)$
- σ is the size of the smallest color class of H among all proper χ-colorings of $V(H)$.

The critical chromatic number of H, $\chi_{cr}(H)$ is $\chi_{cr}(H) = \frac{(\chi-1)h}{h-\sigma}$

Fact

For any graph H:

$$\chi(H) - 1 < \chi_{cr}(H) \leq \chi(H)$$
Critical chromatic number

Definition
Let H be a graph with
- order: $h = |V(H)|$
- chromatic number: $\chi = \chi(H)$
- σ is the size of the smallest color class of H among all proper χ-colorings of $V(H)$.

The critical chromatic number of H, $\chi_{cr}(H)$ is $\chi_{cr}(H) = \frac{(\chi-1)h}{h-\sigma}$

Fact
For any graph H:

$$\chi(H) - 1 < \chi_{cr}(H) \leq \chi(H)$$

Also, $\chi_{cr}(H) = \chi(H)$ iff every proper χ-coloring of H is a equipartition.
Critical chromatic number

Definition

Let H be a graph with
- order: $h = |V(H)|$
- chromatic number: $\chi = \chi(H)$
- σ is the size of the smallest color class of H among all proper χ-colorings of $V(H)$.

The critical chromatic number of H, $\chi_{cr}(H)$ is

$$\chi_{cr}(H) = \frac{(\chi-1)h}{h-\sigma}$$

Fact

For any graph H:

$$\chi(H) - 1 < \chi_{cr}(H) \leq \chi(H)$$

Also, $\chi_{cr}(H) = \chi(H)$ iff every proper χ-coloring of H is a equipartition.

$\chi_{cr}(H)$ was defined by Komlós, 2000.
Theorem (Komlós, 2000)

For every H and every n, divisible by $|V(H)|$, there exists a G of order n with

$$\delta(G) = \left\lfloor \left(1 - \frac{1}{\chi_{cr}(H)} \right)^n \right\rfloor - 1$$

and no H-factor.
Use of critical chromatic number

Theorem (Komlós, 2000)

For every H and every n, divisible by $|V(H)|$, there exists a G of order n with

$$\delta(G) = \left\lfloor \left(1 - \frac{1}{\chi_{cr}(H)}\right)n\right\rfloor - 1$$

and no H-factor.

Theorem (Komlós, 2000)

For every H and $\epsilon > 0$, there exists $n_0 = n_0(H, \epsilon)$ such that if G has order $n \geq n_0$ and

$$\delta(G) \geq \left(1 - \frac{1}{\chi_{cr}(H)}\right)n$$

then G has an H-factor that covers all but ϵn vertices in G.
Use of critical chromatic number

Theorem (Komlós, 2000)

For every H and every n, divisible by $|V(H)|$, there exists a G of order n with

$$\delta(G) = \left\lceil \left(1 - \frac{1}{\chi_{cr}(H)}\right)n \right\rceil - 1$$

and no H-factor.

Theorem (Komlós, 2000)

For every H and $\epsilon > 0$, there exists $n_0 = n_0(H, \epsilon)$ such that if G has order $n \geq n_0$ and

$$\delta(G) \geq \left(1 - \frac{1}{\chi_{cr}(H)}\right)n$$

then G has an H-factor that covers all but ϵn vertices in G.

Shokoufandeh & Zhao, 2003, improved ϵn to $C = C(H)$.
Theorem (Komlós, 2000)

For every H and $\epsilon > 0$, there exists $n_0 = n_0(H, \epsilon)$ such that if G has order $n \geq n_0$ and

$$\delta(G) \geq \left(1 - \frac{1}{\chi_{cr}(H)}\right)n$$

then G has an H-factor that covers all but ϵn vertices in G.

Shokoufandeh & Zhao, 2003, improved ϵn to $C = C(H)$.

Kühn & Osthus, 2009, gave a characterization of many H for which

$$\delta(G) \geq \left(1 - \frac{1}{\chi_{cr}(H)}\right)n + C'$$

guarantees an H-factor for $C' = C'(H)$.
Use of critical chromatic number

Theorem (Komlós, 2000)

For every H and $\epsilon > 0$, there exists $n_0 = n_0(H, \epsilon)$ such that if G has order $n \geq n_0$ and

$$\delta(G) \geq \left(1 - \frac{1}{\chi_{cr}(H)}\right)n$$

then G has an H-factor that covers all but ϵn vertices in G.

Kühn & Osthus, 2009, gave a characterization of many H for which

$$\delta(G) \geq \left(1 - \frac{1}{\chi_{cr}(H)}\right)n + C'$$

guarantees an H-factor for $C' = C'(H)$.

Question

Does χ_{cr} provide a better minimum-degree parameter for finding an H-factor of an r-partite graph where $r = \chi(H)$?
Possible solution techniques

- Ideas from the Kierstead-Kostochka proof
Possible solution techniques

- Ideas from the Kierstead-Kostochka proof
 - e.g., discharging
Possible solution techniques

- Ideas from the Kierstead-Kostochka proof
 - e.g., discharging

- Ideas from the Csaba-Mydlarz proof
Possible solution techniques

- Ideas from the Kierstead-Kostochka proof
 - e.g., discharging

- Ideas from the Csaba-Mydlarz proof
 - there is a structure that might be modified to apply their main lemma.
Open problems

- Is it true that $\exists C$ such that $G \in \mathcal{G}_5(N)$ and $\bar{\delta}(G) \geq (4/5)N$ implies that there exists a partial K_5-factor of size $(1 - \epsilon)N$?
Open problems

- Is it true that $\exists C$ such that $G \in \mathcal{G}_5(N)$ and $\bar{\delta}(G) \geq (4/5)N$ implies that there exists a partial K_5-factor of size $(1 - \epsilon)N$?

- Is it true that, $\forall \epsilon > 0$, $\exists N_0 = N_0(\epsilon)$ such that $N \geq N_0$, $G \in \mathcal{G}_5(N)$ and $\bar{\delta}(G) \geq (4/5 + \epsilon)N$ implies a K_5-factor?
Open problems

- Is it true that $\exists C$ such that $G \in G_5(N)$ and $\bar{\delta}(G) \geq (4/5)N$ implies that there exists a partial K_5-factor of size $(1 - \epsilon)N$?

- Is it true that, $\forall \epsilon > 0$, $\exists N_0 = N_0(\epsilon)$ such that $N \geq N_0$, $G \in G_5(N)$ and $\bar{\delta}(G) \geq (4/5 + \epsilon)N$ implies a K_5-factor?

Almost-covering question ($r = 5$)

Does there exist an absolute constant C such that:

For all $\epsilon > 0$, if $G \in G_5(N)$,

$$\bar{\delta}(G) \geq \left(\frac{4}{5} + \epsilon\right)N$$

and T_0 is a partial K_5-factor of G with $|T_0| < N - C$, then \exists a partial K_5-factor T' with $|T'| > |T_0|$?
Open problems

Almost-covering question \((r = 5)\)

Does there exist an absolute constant \(C\) such that:
For all \(\epsilon > 0\), if \(G \in \mathcal{G}_5(N)\),

\[
\bar{\delta}(G) \geq \left(\frac{4}{5} + \epsilon\right)N
\]

and \(T_0\) is a partial \(K_5\)-factor of \(G\) with \(|T_0| < N - C\), then \(\exists\) a partial \(K_5\)-factor \(T'\) with \(|T'| > |T_0|\)?

- Given a bipartite graph \(H\), what is the minimum degree required to ensure an \(H\)-factor in a bipartite graph, with appropriate divisibility conditions?
Open problems

Almost-covering question \((r = 5)\)

Does there exist an absolute constant \(C\) such that:
For all \(\epsilon > 0\), if \(G \in \mathcal{G}_5(N)\),

\[
\bar{\delta}(G) \geq \left(\frac{4}{5} + \epsilon\right)N
\]

and \(\mathcal{T}_0\) is a partial \(K_5\)-factor of \(G\) with \(|\mathcal{T}_0| < N - C\), then \(\exists\) a partial \(K_5\)-factor \(\mathcal{T}'\) with \(|\mathcal{T}'| > |\mathcal{T}_0|\)?

- Given a bipartite graph \(H\), what is the minimum degree required to ensure an \(H\)-factor in a bipartite graph, with appropriate divisibility conditions?

 I.e., \((1/2 + \epsilon)N\) is sufficient. What about \((1 - 1/\chi_{cr}(H) + \epsilon)N\)?
Bibliography

CsM09+ B. Csaba and M. Mydlarz, Approximate multipartite version of the Hajnal-Szemerédi theorem.

MZ09+ R. Martin and Y. Zhao, Tiling tripartite graphs with 3-colorable graphs, submitted.