TAO’S SPECTRAL PROOF OF THE SZEMERÉDI REGULARITY
LEMMA

S. CIOABA AND R.R. MARTIN

ABSTRACT. On December 3, 2012, following the Third Abel conference, in honor of Endre
Szemerédi, Terence Tao posted on his blog a proof of the spectral version of Szemerédi’s
regularity lemma. This, in turn, proves the original version.

1. Introduction

Tao attributes this proof to Frieze and Kannan [1].

One thing to observe is that this is a statement on matrices and graphs are just a conse-
quence.

2. Basic matrix version

Lemma 1 (Szemerédi’s regularity lemma, matrix version). Let T be a self-adjoint $n \times n$
matrix such that $\text{tr}(T^2) \leq n^2$. Let V be the set of n indices and let $\epsilon > 0$. Then there exists
an $M \leq M(\epsilon)$ and

- a decomposition of T into three matrices, $T = T_1 + T_2 + T_3$, each of which is self-
 adjoint,
- a partition $V = V_0 \cup V_1 \cup \cdots \cup V_M$, and
- a set of pairs $\Sigma \subset \binom{\{0,\ldots,M\}}{2}$ (which contains all pairs with 0),

such that

- for all $i, j \in \{0, 1, \ldots, M\}$, there exists d_{ij} such that for all $a \in V_i$ and $b \in V_j$, we
 have $|(T_1)_{ab} - d_{ij}| < \epsilon$,
- for all $i, j \in \{0, 1, \ldots, M\} - \Sigma$, we have $\sum_{a \in V_i} \sum_{b \in V_j} |(T_2)_{ab}|^2 < \epsilon|V_i||V_j|$, and
- for all $i, j \in \{0, 1, \ldots, M\} - \Sigma$, we have $n \cdot \sigma(T_3) < \epsilon|V_i||V_j|$, (where $\sigma(T_3)$ is T_3’s
 largest singular value) and
- $\sum_{(i,j) \in \Sigma} |V_i||V_j| \leq \epsilon n^2$.

Proof. Enumerate $V = \{1, \ldots, n\}$. Since T is self-adjoint, it has an eigenvalue decomposition

$$T = \sum_{i=1}^{n} \lambda_i u_i u_i^*,$$

for some orthonormal basis u_1, \ldots, u_n of \mathbb{C}^n (where the vectors are column vectors) and real
eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. We arrange them in decreasing order of magnitude

$$|\lambda_1| \geq \cdots \geq |\lambda_n|.$$
In a self-adjoint matrix, the trace of T^2 is the sum of the squares of the eigenvalues of T and so $\text{tr}(T^2) = \sum_{j=1}^{n} |\lambda_j|^2$. So we can bound the eigenvalues by observing that $i\lambda_i^2 \leq \sum_{j=1}^{i} \lambda_j^2 \leq n^2$ and so, for all $i \in \{1, \ldots, n\}$,

$$|\lambda_i| \leq \frac{n}{\sqrt{i}}. \tag{1}$$

We will be given a function $F : \mathbb{N} \to \mathbb{N}$ that we will specify later. This function does depend on ϵ (we suppress this in the notation) and it satisfies the inequality $F(i) > i$ for all integers i. We want to find an integer J for which

$$\sum_{J \leq j < F(J)} |\lambda_j|^2 \leq \epsilon^3 n^2. \tag{2}$$

To do this, we consider the partition of $\{1, \ldots, n\}$ into intervals $[F^{(k-1)}(1), F^{(k)}(1) - 1]$ from $k = 1, \ldots, 1/\epsilon^3$ where $F^{(k)}$ represents the kth composition of F with itself. Note that either we find a $J = F^{(k-1)}(1)$ for which (2) is satisfied or the sum of $|\lambda_j|^2$ for all j in some interval is greater than $\epsilon^3 n^2$. Since there are $1/\epsilon^3$ intervals, this would contradict the n^2 bound for $\text{tr}(T^2)$.

Thus, we have a partition of T into three matrices:

$$T = T_1 + T_2 + T_3,$$

where T_1 is the “structured” component

$$T_1 := \sum_{i < J} \lambda_i u_i u_i^*; \tag{3}$$

and T_2 is the “error” component

$$T_2 := \sum_{J \leq i < F(J)} \lambda_i u_i u_i^*; \tag{4}$$

and T_3 is the “pseudorandom” component

$$T_3 := \sum_{i \geq F(J)} \lambda_i u_i u_i^*. \tag{5}$$

We will partition the vertex set so that T_1 is approximately constant on most clusters. The number of such clusters will be $O_{\epsilon, \epsilon}(1)$. For each $j < J$ we define a partition into clusters on which entry u_i (a complex number) varies by $\frac{\epsilon}{j} n^{-1/2}$. There is also an exceptional cluster of size $\frac{\epsilon}{j} n$ which comes from the vertices for which the entry of u_i is large in magnitude. That is, either its real or its imaginary part is larger than $\sqrt{\frac{\epsilon}{j} n^{-1/2}}$ in absolute value.

To see this, simply place a vertex into the exceptional cluster if the corresponding entry of u_i has the absolute value of either its real or imaginary part at least $\sqrt{\frac{\epsilon}{j} n^{-1/2}}$. Since $\|u_i\|_2 = 1$, this means there can be at most $\frac{\epsilon}{j} n$ such entries. Partition the square of length $2\sqrt{\frac{\epsilon}{j} n^{-1/2}}$ centered at the origin of the complex plane into subsquares of side length $\frac{\epsilon^{3/2}}{j^{3/2}} n^{-1/2}$. There are \(\left(2\sqrt{\frac{\epsilon}{j} n^{-1/2}}\right)^2 / \left(\frac{\epsilon^{3/2}}{j^{3/2}} n^{-1/2}\right)^2 = 4J^4/\epsilon^4\) such subsquares. Partition the vertices according to where its corresponding entry of u_i lies.
Take the union of all vertices in the exceptional clusters and the corresponding exceptional cluster is of size at most \((J-1) \cdot \frac{3}{J} < c\). For the rest of the vertices, we take the common refinement of the partitions defined by each \(u_i, i < J\). This defines a partition of the vertex set \(V = V_0 + V_1 + \cdots + V_M\) in which \(V_0\) is the exceptional set. For \(i = 1, \ldots, M\), the entries over \(V_i\) of each of \(u_1, \ldots, u_{J-1}\) have magnitude at most

\[
\sqrt{2} \cdot 2 \sqrt{\frac{J}{\epsilon} n^{-1/2}},
\]

and differ in magnitude by at most

\[
\sqrt{2} \frac{\epsilon^{3/2}}{J^{3/2}} n^{-1/2}.
\]

Moreover,

\[
M \leq \left(\frac{4J^4}{\epsilon^4} \right)^J.
\]

Now, let \(i, j \in \{1, \ldots, M\}\). We will show that the values of \(T_1\) over the block \(V_i \times V_j\) differ by at most \(8\epsilon\). To see this, let \(a, c \in V_i\) and \(b, d \in V_j\). Then

\[
(T_1)_{ab} - (T_1)_{cd} = \left| \sum_{i < J} \lambda_i u_i(a)u_i(b) - \lambda_i u_i(c)u_i(d) \right|
\]

\[
\leq \sum_{i < J} \left| \lambda_i \left(u_i(a)u_i(b) - u_i(c)u_i(b) + u_i(c)u_i(b) - u_i(c)u_i(d) \right) \right|
\]

\[
\leq \sum_{i < J} n \left| u_i(b) \right| \left| u_i(a) - u_i(c) \right| + n \left| u_i(c) \right| \left| u_i(b) - u_i(d) \right|
\]

\[
\leq J \left(n \cdot 2 \sqrt{2} \sqrt{\frac{J}{\epsilon} n^{-1/2}} \cdot \sqrt{2} \frac{\epsilon^{3/2}}{J^{3/2}} n^{-1/2} + n \cdot 2 \sqrt{2} \sqrt{\frac{J}{\epsilon} n^{-1/2}} \cdot \sqrt{2} \frac{\epsilon^{3/2}}{J^{3/2}} n^{-1/2} \right)
\]

\[
= 2J \left(n \cdot 2 \sqrt{2} \sqrt{\frac{J}{\epsilon} n^{-1/2}} \cdot \sqrt{2} \frac{\epsilon^{3/2}}{J^{3/2}} n^{-1/2} \right)
\]

\[
< 8\epsilon.
\]

As a result, we can conclude that, if \(d_{ij}\) is the mean of the entries in the block \(V_i \times V_j\), then by the triangle inequality,

\[
\left| (T_1)_{ab} - d_{ij} \right| < 16\epsilon.
\]

Next we consider \(T_2\) and observe that \(\text{tr}(T_2^2) = \sum_{J \leq j \leq F(j)} \lambda^2_i < \epsilon^3 n^2\). So, \(\sum_{a, b \in V} \left| (T_2)_{ab} \right|^2 < \epsilon^3 n^2\). Define \(\Sigma_1\) so that for every \((i, j) \notin \Sigma_1\),

\[
\sum_{a \in V_i} \sum_{b \in V_j} \left| (T_2)_{ab} \right|^2 < \epsilon \left| V_i \right| \left| V_j \right|.
\]

Thus,

\[
\epsilon^2 \sum_{(i, j) \in \Sigma_1} \left| V_i \right| \left| V_j \right| \leq \sum_{(i, j) \in \Sigma_1} \sum_{a \in V_i} \sum_{b \in V_j} \left| (T_2)_{ab} \right|^2 \leq \epsilon^3 n^2.
\]
consequently,
\[\sum_{(i,j) \in \Sigma} |V_i||V_j| \leq \epsilon n^2. \]

Finally, we turn our attention to \(T_3 \). The maximum eigenvalue of \(T_3 \) is \(|\lambda_{F(J)}| \leq n/\sqrt{F(J)} \).
We want to establish that \(n^2/\sqrt{F(J)} \leq \epsilon |V_i||V_j| \) for \((i,j) \notin \Sigma \). Because \(|V_i|, |V_j| \geq \epsilon n/M \), it is sufficient to show that \(F(J) \geq M^4/\epsilon^6 \) because that would verify that
\[\frac{n^2}{\sqrt{F(J)}} \leq \epsilon |V_i||V_j|. \]

By (8), \(M \leq (4J^4/\epsilon^4)^J \). So the function that suffices is
\[F(x) \geq \frac{1}{\epsilon^6} \left(\frac{4x^4}{\epsilon^4} \right)^{4x}. \]

Let \(\Sigma \) be the pairs \((i,j) \in \{0,1,\ldots,M\} \) such that either \((i,j) \in \Sigma_1, i = 0, j = 0 \) or \(\min(|V_i|, |V_j|) \leq \frac{\epsilon n}{M} \). Thus,
\[
\sum_{(i,j) \in \Sigma} |V_i||V_j| \leq \sum_{(i,j) \in \Sigma_1} |V_i||V_j| + 2|V_0||V| + 2 \sum_{|V_i| < \epsilon n/M} |V_i||V|
\]
\[
\leq \epsilon n^2 + 2\epsilon n \cdot n + 2M\frac{\epsilon n}{M} \leq 5\epsilon n^2.
\]

Note that in this proof we use coefficients of \(1q6\epsilon \) and \(5\epsilon \) in (9) and (11), respectively. We can, of course, choose \(\epsilon/16 \) rather than \(\epsilon \) but we chose these parameters to make the computations somewhat more transparent.

\[\square \]

3. Spectral version

Lemma 2 (Szemerédi’s regularity lemma, spectral version). Let \(T \) be a self-adjoint \(n \times n \) matrix such that \(\text{tr}(T^2) \leq n^2 \). Let \(V \) be the set of \(n \) indices and let \(\epsilon > 0 \). Then there exists a partition \(V = V_1 \cup \cdots \cup V_M \) for some \(M \leq M(\epsilon) \) with the property that, for all pairs \((i,j) \in \{1,\ldots,M\}^2 \) outside of an exceptional set \(\Sigma \), one has
\[
|v_B^*(T - d_{ij}I)v_A| \leq \epsilon |V_i||V_j|
\]
whenever \(\text{supp}(v_A) \subset V_i, \|v_A\|_2^2 \leq |V_i|, \text{supp}(v_B) \subset V_j \) and \(\|v_B\|_2^2 \leq |V_j| \), for some real number \(d_{ij} \). Furthermore, we have
\[
\sum_{(i,j) \in \Sigma} |V_i||V_j| \leq \epsilon n^2.
\]

Proof. Enumerate \(V = \{1,\ldots,n\} \). Since \(T \) is self-adjoint, it has an eigenvalue decomposition
\[T = \sum_{i=1}^{n} \lambda_i u_i u_i^*, \]
for some orthonormal basis \(u_1, \ldots, u_n \) of \(\mathbb{C}^n \) (where the vectors are column vectors) and real eigenvalues \(\lambda_1, \ldots, \lambda_n \in \mathbb{R} \). We arrange them in decreasing order of magnitude
\[|\lambda_1| \geq \cdots \geq |\lambda_n|. \]
In a self-adjoint matrix, the trace of T^2 is the sum of the squares of the eigenvalues of T and so $\text{tr}(T^2) = \sum_{j=1}^{n} |\lambda_j|^2$. So we can bound the eigenvalues by observing that $i\lambda_i^2 \leq \sum_{j=1}^{i} \lambda_j^2 \leq n^2$ and so, for all $i \in \{1, \ldots, n\}$,

$$|\lambda_i| \leq \frac{n}{\sqrt{i}}. \tag{14}$$

We will be given a function $F : \mathbb{N} \to \mathbb{N}$ that we will specify later. This function does depend on ϵ (we suppress this in the notation) and it satisfies the inequality $F(i) > i$ for all integers i. We want to find an integer J for which

$$\sum_{J \leq j < F(J)} |\lambda_j|^2 \leq \epsilon^3 n^2. \tag{15}$$

To do this, we consider the partition of $\{1, \ldots, n\}$ into intervals $[F^{(k-1)}(1), F^{(k)}(1) - 1]$ from $k = 1, \ldots, 1/\epsilon^3$ where $F^{(k)}$ represents the kth composition of F with itself. Note that either we find a $J = F^{(k-1)}(1)$ for which (15) is satisfied or the sum of $|\lambda_j|^2$ for all j in some interval is greater than $\epsilon^3 n^2$. Since there are $1/\epsilon^3$ intervals, this would contradict the n^2 bound for $\text{tr}(T^2)$.

Thus, we have a partition of T into three matrices:

$$T = T_1 + T_2 + T_3,$$

where T_1 is the “structured” component

$$T_1 := \sum_{i < J} \lambda_i u_i u_i^*; \tag{16}$$

and T_2 is the “error” component

$$T_2 := \sum_{J \leq i < F(J)} \lambda_i u_i u_i^*; \tag{17}$$

and T_3 is the “pseudorandom” component

$$T_3 := \sum_{i \geq F(J)} \lambda_i u_i u_i^*. \tag{18}$$

We will partition the vertex set so that T_1 is approximately constant on most clusters. The number of such clusters will be $O_{J, \epsilon}(1)$. For each $j < J$ we define a partition into clusters on which entry u_i (a complex number) varies by $\frac{\epsilon}{\sqrt{J}} n^{-1/2}$. There is also an exceptional cluster of size $\frac{\epsilon}{\sqrt{J}} n$ which comes from the vertices for which the entry of u_i is large in magnitude. That is, either its real or its imaginary part is larger than $\epsilon^3 n^{-1/2}$ in absolute value.

To see this, simply place a vertex into the exceptional cluster if the corresponding entry of u_i has the absolute value of either its real or imaginary part at least $\epsilon \sqrt{J} n^{-1/2}$. Since $\|u_i\|_2 = 1$, this means there can be at most $\frac{\epsilon}{\sqrt{J}} n$ such entries. Partition the square of length $2 \sqrt{\frac{J}{\epsilon}} n^{-1/2}$ centered at the origin of the complex plane into subsquares of side length $\frac{\epsilon^{3/2}}{\sqrt{J^{3/2}}} n^{-1/2}$. There are $\left(2 \sqrt{\frac{J}{\epsilon}} n^{-1/2}\right)^2 / \left(\frac{\epsilon^{3/2}}{\sqrt{J^{3/2}}} n^{-1/2}\right)^2 = 4J^4/\epsilon^4$ such subsquares. Partition the vertices according to where its corresponding entry of u_i lies.
Take the union of all vertices in the exceptional clusters and the corresponding exceptional cluster is of size at most \((J - 1) \cdot \frac{\epsilon n}{J} < cn\). For the rest of the vertices, we take the common refinement of the partitions defined by each \(u_i, i < J\). This defines a partition of the vertex set \(V = V_0 + V_1 + \cdots + V_M\) in which \(V_0\) is the exceptional set. For \(i = 1, \ldots, M\), the entries over \(V_i\) of each of \(u_1, \ldots, u_{J-1}\) have magnitude at most

\[
\sqrt{2} \cdot \sqrt{\frac{J}{\epsilon}} n^{-1/2},
\]

and differ in magnitude by at most

\[
\sqrt{2} \frac{\epsilon^{3/2}}{J^{3/2}} n^{-1/2}.
\]

Moreover,

\[
M \leq \left(\frac{4J^4}{\epsilon} \right)^J.
\]

Now, let \(i, j \in \{1, \ldots, M\}\). We will show that the values of \(T_1\) over the block \(V_i \times V_j\) differ by at most \(8\epsilon\). To see this, let \(a, c \in V_i\) and \(b, d \in V_j\). Then

\[
(T_{1})_{ab} - (T_{1})_{cd} = \left| \sum_{i<J} \lambda_i u_i(a) u_i(b) - \sum_{i<J} \lambda_i u_i(c) u_i(d) \right|
\leq \left| \sum_{i<J} |\lambda_i| |u_i(a) u_i(b) - u_i(c) u_i(b) + u_i(c) u_i(b) - u_i(c) u_i(d)| \right|
\leq \sum_{i<J} n|u_i(b)||u_i(a) - u_i(c)| + n|u_i(c)||u_i(b) - u_i(d)|
\leq J \left(n \cdot 2 \sqrt{2} \sqrt{\frac{J}{\epsilon}} n^{-1/2} \cdot \sqrt{2} \frac{\epsilon^{3/2}}{J^{3/2}} n^{-1/2} + n \cdot 2 \sqrt{2} \sqrt{\frac{J}{\epsilon}} n^{-1/2} \cdot \sqrt{2} \frac{\epsilon^{3/2}}{J^{3/2}} n^{-1/2} \right)
= 2J \left(n \cdot 2 \sqrt{2} \sqrt{\frac{J}{\epsilon}} n^{-1/2} \cdot \sqrt{2} \frac{\epsilon^{3/2}}{J^{3/2}} n^{-1/2} \right)
< 8\epsilon.
\]

As a result, we can conclude that, if \(d_{ij}\) is the mean of the entries in the block \(V_i \times V_j\), then by the triangle inequality and Cauchy-Schwarz,

\[
|v_B^* (T_1 - d_{ij} I) v_A| \leq \sum_{a \in V_i} \sum_{b \in V_j} |(T_{1})_{ab} - d_{ij}||v_A(a)||v_B(b)|
< 8\epsilon ||v_A||_1 ||v_B||_1
\leq 8\epsilon |V_i||V_j|.
\]

The last step follows from a basic vector norm inequality which gives \(||v_A||_1 \leq \sqrt{|V_i||v_A||_2 \leq |V_i|\) and \(||v_B||_1 \leq \sqrt{|V_j||v_B||_2 \leq |V_j|\).

Next we consider \(T_2\) and observe that \(\text{tr}(T_2^2) = \sum_{j \leq j \leq F(J)} \lambda_j^2 \leq \epsilon^3 n^2\).
So, $\sum_{a,b \in V} |(T_2)_{ab}|^2 \leq \epsilon^3 n^2$. Define Σ_1 so that for every $(i, j) \not\in \Sigma_1$,

$$\sum_{a \in V_i} \sum_{b \in V_j} |(T_2)_{ab}|^2 \leq \epsilon |V_i||V_j|.$$ \hspace{1cm} (22)

Thus,

$$\epsilon^2 \sum_{(i, j) \in \Sigma_1} |V_i||V_j| \leq \sum_{(i, j) \in \Sigma_1} \sum_{a \in V_i} \sum_{b \in V_j} |(T_2)_{ab}|^2 \leq \epsilon^3 n^2.$$ \hspace{1cm} (23)

consequently,

$$\sum_{(i, j) \in \Sigma_1} |V_i||V_j| \leq \epsilon n^2.$$ \hspace{1cm} (24)

So, for any $(i, j) \not\in \Sigma_1$, use the fact that $\sum_{a \in V_i} \sum_{b \in V_j} |(T_2)_{ab}|^2 \leq \epsilon |V_i||V_j|$ we use Cauchy-Schwarz to obtain the following bound

$$|v_B^* T_2 v_A|^2 = \left| \sum_{a \in V_i} \sum_{b \in V_j} (T_2)_{ab} v_A(a) \cdot v_B(b) \right|^2 \leq \left(\sum_{a \in V_i} \sum_{b \in V_j} |(T_2)_{ab}|^2 \right) \left(\sum_{a \in V_i} \sum_{b \in V_j} |v_A(a)|^2 |v_B(b)|^2 \right) = (\epsilon^2 |V_i||V_j|) \|v_A\|^2 \|v_B\|^2.$$ \hspace{1cm} (25)

The last step follows from $\|v_A\|^2 \leq |V_i|$ and $\|v_B\|^2 \leq |V_j|$.

Finally, we turn our attention to T_3. Let v_A and v_B be vectors such that $\|v_A\|^2, \|v_B\|^2 \leq n$. Since the maximum eigenvalue of T_3 is $|\lambda_{F(J)}| \leq n/\sqrt{F(J)}$, we have, first by Cauchy-Schwarz,

$$|v_B^* T_3 v_A| \leq |\lambda_{F(J)}|\|v_A\|_2\|v_B\|_2 \leq n^2/\sqrt{F(J)}.$$ \hspace{1cm} (26)

Let Σ be the pairs $(i, j) \in \{0, 1, \ldots, M\}$ such that either $(i, j) \in \Sigma_1$, $i = 0$, $j = 0$ or $\min(|V_i|, |V_j|) \leq \frac{\epsilon n}{M}$. Thus,

$$\sum_{(i, j) \in \Sigma} |V_i||V_j| \leq \sum_{(i, j) \in \Sigma_1} |V_i||V_j| + 2|V_0||V| + 2 \sum_{|V_i| < \epsilon n/M} |V_i||V| \leq \epsilon n^2 + 2\epsilon n \cdot n + 2M \frac{\epsilon n}{M} n \leq 5\epsilon n^2.$$ \hspace{1cm} (27)

If $(i, j) \not\in \Sigma$, then for all $A \subseteq V_i$ and $B \subseteq V_j$,

$$|v_B^*(T - d_{ij})v_A| \leq |v_B^*(T_1 - d_{ij})v_A| + |v_B^* T_2 v_A| + |v_B^* T_3 v_A| \leq 8\epsilon |V_i||V_j| + \epsilon |V_i||V_j| + n^2/\sqrt{F(J)}.$$ \hspace{1cm} (28)

Finally, we want to establish that $n^2/\sqrt{F(J)} \leq \epsilon |V_i||V_j|$ for $(i, j) \not\in \Sigma$. This would establish that

$$|v_B^*(T - d_{ij})v_A| \leq 10\epsilon |V_i||V_j|.$$

7
Because $|V_i|,|V_j| \geq \epsilon n/M$, it is sufficient to show that $F(J) \geq M^4/\epsilon^6$ because that would verify that
\[
\frac{n^2}{\sqrt{F(J)}} \leq \epsilon^3 n^2 M^2 \leq \epsilon |V_i||V_j|.
\]

By (21), $M \leq (4J^4/\epsilon^4)^J$. So the function that suffices is
\[
F(x) \geq \frac{1}{\epsilon^6} \left(\frac{4x^4}{\epsilon^4}\right)^{4x}.
\]

Note that in this proof we use coefficients of 10ϵ and 5ϵ in (24) and (23), respectively. We can, of course, choose $\epsilon/10$ rather than ϵ but we chose these parameters to make the computations somewhat more transparent. \qed

4. Graph version

Lemma 3 (Szemerédi’s regularity lemma, spectral version). Let $G = (V, E)$ be a graph on n vertices and let $\epsilon > 0$. Then there exists a partition $V = V_1 \cup \cdots \cup V_M$ for some $M \leq M(\epsilon)$ with the property that, for all pairs $(i, j) \in \{1, \ldots, M\}^2$ outside of an exceptional set Σ, one has
\[
|E(A, B) - d_{ij}|A||B|| \ll \epsilon |V_i||V_j|
\]
whenever $A \subset V_i$, $B \subset V_j$, for some real number d_{ij}, where
\[
E(A, B) := \{|(a, b) \in A \times B : \{a, b\} \in E\|
\]
is the number of edges between A and B. Furthermore, we have
\[
\sum_{(i,j) \in \Sigma} |V_i||V_j| \ll \epsilon |V|^2.
\]

Proof. Here we do the proof directly, even though this is a direct consequence of the matrix version above.

Enumerate $V = \{1, \ldots, n\}$. Let T be the incidence matrix of G and note that since T is self-adjoint, it has an eigenvalue decomposition
\[
T = \sum_{i=1}^n \lambda_i u_i u_i^*,
\]
for some orthonormal basis u_1, \ldots, u_n of \mathbb{C}^n (where the vectors are column vectors) and real eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. We arrange them in decreasing order of magnitude
\[
|\lambda_1| \geq \cdots \geq |\lambda_n|.
\]

In a self-adjoint matrix, the trace of T^2 is the sum of the squares of the eigenvalues of T and so $\text{tr}(T^2) = \sum_{j=1}^n |\lambda_j|^2$. In addition, it is the sum of the degrees of degrees of the graph, hence $\text{tr}(T^2) = 2|E(G)| \leq n^2$. So we can bound the eigenvalues by observing that $i\lambda_i^2 \leq \sum_{j=1}^i \lambda_j^2 \leq n^2$ and so, for all $i \in \{1, \ldots, n\},$
\[
|\lambda_i| \leq \frac{n}{\sqrt{i}}.
\]
We will be given a function $F : \mathbb{N} \rightarrow \mathbb{N}$ that we will specify later. This function does depend on ϵ (we suppress this in the notation) and it satisfies the inequality $F(i) > i$ for all integers i. We want to find an integer J for which

$$
\sum_{J \leq j < F(J)} |\lambda_j|^2 \leq \epsilon^3 n^2.
$$

(28)

To do this, we consider the partition of $\{1, \ldots, n\}$ into intervals $[F^{(k-1)}(1), F^{(k)}(1) - 1]$ from $k = 1, \ldots, 1/\epsilon^3$ where $F^{(k)}$ represents the k^{th} composition of F with itself. Note that either we find a $J = F^{(k-1)}(1)$ for which (28) is satisfied or the sum of $|\lambda_j|^2$ for all j in some interval is greater than $\epsilon^3 n^2$. Since there are $1/\epsilon^3$ intervals, this would contradict the n^2 bound for $\text{tr}(T^2)$.

Thus, we have a partition of T into three matrices:

$$
T = T_1 + T_2 + T_3,
$$

where T_1 is the “structured” component

$$
T_1 := \sum_{i < J} \lambda_i u_i u_i^*,
$$

(29)

and T_2 is the “error” component

$$
T_2 := \sum_{J \leq i < F(J)} \lambda_i u_i u_i^*,
$$

(30)

and T_3 is the “pseudorandom” component

$$
T_3 := \sum_{i \geq F(J)} \lambda_i u_i u_i^*.
$$

(31)

We will partition the vertex set so that T_1 is approximately constant on most clusters. The number of such clusters will be $O_{\epsilon, \epsilon}(1)$. For each $j < J$ we define a partition into clusters on which entry u_i (a complex number) varies by $\frac{\epsilon}{2} n^{1/2}$. There is also an exceptional cluster of size $\frac{\epsilon}{2} n$ which comes from the vertices for which the entry of u_i is large in magnitude. That is, either its real or its imaginary part is larger than $\sqrt{\frac{\epsilon}{2} n^{1/2}}$ in absolute value.

To see this, simply place a vertex into the exceptional cluster if the corresponding entry of u_i has the absolute value of either its real or imaginary part at least $\sqrt{\frac{\epsilon}{2} n^{1/2}}$. Since $\|u_i\|_2 = 1$, this means there can be at most $\frac{\epsilon}{2} n$ such entries. Partition the square of length $2\sqrt{\frac{\epsilon}{2} n^{1/2}}$ centered at the origin of the complex plane into subsquares of side length $\frac{\epsilon^{3/2}}{\sqrt{3/2}} n^{-1/2}$. There are $\left(2\sqrt{\frac{\epsilon}{2} n^{1/2}}\right)^2 / \left(\frac{\epsilon^{3/2}}{\sqrt{3/2}} n^{-1/2}\right)^2 = 4J^2/\epsilon^4$ such subsquares. Partition the vertices according to where its corresponding entry of u_i lies.

Take the union of all vertices in the exceptional clusters and the corresponding exceptional cluster is of size at most $(J - 1) \cdot \frac{\epsilon}{2} n < \epsilon n$. For the rest of the vertices, we take the common refinement of the partitions defined by each u_i, $i < J$. This defines a partition of the vertex set $V = V_0 + V_1 + \cdots + V_M$ in which V_0 is the exceptional set. For $i = 1, \ldots, M$, the entries
over V_i of each of u_1, \ldots, u_{J-1} have magnitude at most

$$\sqrt{2} \cdot 2 \sqrt{\frac{J}{\epsilon}} n^{-1/2}. \quad (32)$$

and differ in magnitude by at most

$$\sqrt{2} \frac{\epsilon^{3/2}}{\sqrt{J}3/2} n^{-1/2}. \quad (33)$$

Moreover,

$$M \leq \left(\frac{4J^4}{\epsilon^4} \right)^{J}. \quad (34)$$

Now, let $i, j \in \{1, \ldots, M\}$. We will show that the values of T_1 over the block $V_i \times V_j$ differ by at most 8ϵ. To see this, let $a, c \in V_i$ and $b, d \in V_j$. Then

$$(T_1)_{ab} - (T_1)_{cd} = \left| \sum_{i<J} \lambda_i \mathbf{u}_i(a) \mathbf{u}_i(b) - \lambda_i \mathbf{u}_i(c) \mathbf{u}_i(d) \right|$$

$$\leq \sum_{i<J} |\lambda_i| |\mathbf{u}_i(a) \mathbf{u}_i(b) - \mathbf{u}_i(c) \mathbf{u}_i(b) + \mathbf{u}_i(c) \mathbf{u}_i(b) - \mathbf{u}_i(c) \mathbf{u}_i(d)|$$

$$\leq \sum_{i<J} n|\mathbf{u}_i(b)||\mathbf{u}_i(a) - \mathbf{u}_i(c)| + n|\mathbf{u}_i(c)||\mathbf{u}_i(b) - \mathbf{u}_i(d)|$$

$$\leq J \left(n \cdot 2\sqrt{2} \sqrt{\frac{J}{\epsilon}} n^{-1/2} \cdot \sqrt{2} \frac{\epsilon^{3/2}}{\sqrt{J}3/2} n^{-1/2} + n \cdot 2\sqrt{2} \sqrt{\frac{J}{\epsilon}} n^{-1/2} \cdot \sqrt{2} \frac{\epsilon^{3/2}}{\sqrt{J}3/2} n^{-1/2} \right)$$

$$= 2J \left(n \cdot 2\sqrt{2} \sqrt{\frac{J}{\epsilon}} n^{-1/2} \cdot \sqrt{2} \frac{\epsilon^{3/2}}{\sqrt{J}3/2} n^{-1/2} \right)$$

$$< 8\epsilon.$$

As a result, we can conclude that, if d_{ij} is the mean of the entries in the block $V_i \times V_j$, then by the triangle inequality and Cauchy-Schwarz,

$$|\mathbf{1}_B(T_1 - d_{ij}\mathbf{1})\mathbf{1}_A| \leq \sum_{a \in A} \sum_{b \in B} |(T_1)_{ab} - d_{ij}|$$

$$< 8\epsilon|A||B|$$

$$\leq 8\epsilon|V_i||V_j|.$$

Next we consider T_2 and observe that $\text{tr}(T_2^2) = \sum_{J \leq J \leq F(J)} \lambda_i^2 \leq \epsilon^3 n^2$. So, $\sum_{a,b \in V} |(T_2)_{ab}|^2 \leq \epsilon^3 n^2$. Define Σ_1 so that for every $(i, j) \notin \Sigma_1$,

$$\sum_{a \in V_i} \sum_{b \in V_j} |(T_2)_{ab}|^2 \leq \epsilon|V_i||V_j|. \quad (35)$$

Thus,

$$\epsilon^2 \sum_{(i,j) \in \Sigma_1} |V_i||V_j| \leq \sum_{(i,j) \in \Sigma_1} \sum_{a \in V_i} \sum_{b \in V_j} |(T_2)_{ab}|^2 \leq \epsilon^3 n^2.$$
consequently,
\[\sum_{(i,j) \in \Sigma} |V_i||V_j| \leq \epsilon n^2. \]

So, for any \((i, j) \not\in \Sigma_1\), use the fact that \(\sum_{a \in V_i} \sum_{b \in V_j} |(T_2)_{ab}|^2 \leq \epsilon |V_i||V_j|\) we use Cauchy-Schwarz to obtain the following bound

\[|1_B^* T_2 1_A|^2 = \left| \sum_{a \in A} \sum_{b \in B} (T_2)_{ab} \right|^2 \leq \left(\sum_{a \in A} \sum_{b \in B} |(T_2)_{ab}|^2 \right) |A||B| \]
\[= (\epsilon^2 |V_i||V_j|) |A||B| \]
\[\sum_{(i,j) \in \Sigma} |V_i||V_j| \leq \sum_{(i,j) \in \Sigma_1} |V_i||V_j| + 2|V_0||V| + 2 \sum_{|V_i| < \epsilon n/M} |V_i||V| \]
\[\leq \epsilon n^2 + 2\epsilon n \cdot n + 2M \frac{\epsilon n}{M} n \leq 5\epsilon n^2. \]

Finally, we turn our attention to \(T_3\). Since the maximum eigenvalue of \(T_3\) is \(|\lambda_{F(J)}| \leq n/\sqrt{F(J)}\), we have, first by Cauchy-Schwarz,

\[|1_B^* T_3 1_A| \leq |\lambda_{F(J)}||A||B| \leq n^2/\sqrt{F(J)}. \]

Let \(\Sigma\) be the pairs \((i, j) \in \{0, 1, \ldots, M\}\) such that either \((i, j) \in \Sigma_1\), \(i = 0\), \(j = 0\) or \(\min(|V_i|, |V_j|) \leq \frac{\epsilon n}{M}\). Thus,

\[\sum_{(i,j) \in \Sigma} |V_i||V_j| \leq \sum_{(i,j) \in \Sigma_1} |V_i||V_j| + 2|V_0||V| + 2 \sum_{|V_i| < \epsilon n/M} |V_i||V| \]
\[\leq \epsilon n^2 + 2\epsilon n \cdot n + 2M \frac{\epsilon n}{M} n \leq 5\epsilon n^2. \]

If \((i, j) \not\in \Sigma\), then for all \(A \subseteq V_i\) and \(B \subseteq V_j\),

\[|1_B^*(T - d_{ij}) 1_A| \leq |1_B^*(T_1 - d_{ij} 1_A| + |1_B^* T_2 1_A| + |1_B^* T_3 1_A| \]
\[\leq 8\epsilon |V_i||V_j| + \epsilon |V_i||V_j| + n^2/\sqrt{F(J)}. \]

Finally, we want to establish that \(n^2/\sqrt{F(J)} \leq \epsilon |V_i||V_j|\) for \((i, j) \not\in \Sigma\). This would establish that

\[(37) \quad |1_B^*(T - d_{ij}) 1_A| \leq 10\epsilon |V_i||V_j|. \]

Because \(|V_i|, |V_j| \geq \epsilon n/M\), it is sufficient to show that \(F(J) \geq M^4/\epsilon^6\) because that would verify that

\[\frac{n^2}{\sqrt{F(J)}} \leq \frac{\epsilon^3 n^2}{M^2} \leq \epsilon |V_i||V_j|. \]

By (34), \(M \leq (4J^4/\epsilon^4)^J\). So the function that suffices is

\[F(x) \geq \frac{1}{\epsilon^6} \left(\frac{4x^4}{\epsilon^4} \right)^{4x} \]

Note that in this proof we use coefficients of 10\(\epsilon\) and 5\(\epsilon\) in (37) and (36), respectively. We can, of course, choose \(\epsilon/10\) rather than \(\epsilon\) but we chose these parameters to make the
computations somewhat more transparent.

REFERENCES